COMMISSION DES COMMUNAUTES EUROPEENNES

7973/VII/67-F Add. c/28-67 Add.

Direction Générale des Transports

Bruxelles, le 4 octobre 1967

CONFIDENTIEL

Comité d'experts gouvernementaux chargés d'assister la Commission dans les études de coût des transports

Addendum au rapport définitif

sur l'étude du problème de la détermination de coefficients d'équivalence relatifs à l'occupation de la capacité des infrastructures servant aux transports par route

> établi sur demande de la Commission par un groupe d'experts

Rapporteur principal : M. A.L.AURIGNAC, ingénieur, Centre de Recherche S.A.E. . Paris

Co-rapporteurs:

Prof. Dr. Ing. I. ADORISIO, Straordinario di

trasporti nell'Università di Cagliari

Drs. J.B. VERMETTEN, Centraal Planbureau,

Den Haag

ersurvatoire Economique AND TOWNSHAP

•/。

CALCUL DES COUTS MOYENS ET DES COUTS MARGINAUX SOCIAUX SUR UNE SECTION DONNÉE

Introduction:

Les calculs de coûts par catégorie de véhicule posent les problèmes suivants :

- la connaissance des lois du trafic en matière de vitesse et débit,
- la connaissance des fonctions de coûts par catégorie de trafic ainsi que leurs variations avec la vitesse et les caractéristiques géométriques des routes,
- enfin, les variations horaires de trafic en volume et composition qui interviennent lorsque sont estimés des coûts moyens sur une période.

Les lois élémentaires de coûts dépendent de la vitesse et il pst possible de les exprimer en fonction des divers trafics lorsqu'on connaît les liaisons débits-vitesses.

1 - LIAISONS : VITESSES / DEBITS

Des mesures de vitesses moyennes ont été réalisées sur une échantillon de sections présentant des caractéristiques géométriques variées de façon à étuider les lois vitesses/débits.

Les ajustements les plus simples ont été obtenus par des calculs de regression multiples, en retenant les seuls variables de débit dans un sens de circulation.

k : catégories de véhicules,

1 : catégories de route.

$$\overrightarrow{V} = \overrightarrow{V} + \overrightarrow{A} \overrightarrow{T}$$

Vk : Vitesse moyenne de la catégorie k sur une route présentant les caractéristiques l

$$\overrightarrow{V}$$
 = Vecteur vitesse moyenne \overrightarrow{V} = $\left\{\overrightarrow{V_k}\right\}$

$$T_k^l$$
: Débit horaire de la catégorie k T Vecteur débit horaire $T = \{T_k\}$

A^l : Matrice des coefficients de régression

Vo. : Constante de régression.

A Company of the con-

2 - CALCUL DES COUTS MOYENS DE TRANSPORT EN VALEUR INDIVIDUELLE ET EN VALEUR COLLECTIVE

Le coût moyen comprend des coûts de consommation et d'usure du temps de parcours.

Pour une catégorie de véhicule, les divers coûts se présentent sous la forme d'une fonction polynomiale de la vitesse.

$$C_k = \frac{b_{k1}}{V_k} + b_{k2} + b_{k3}$$
 $V_k + b_{k4}$ $V_k^2 + b_{k5}$ $V_k^3 + \dots$

soit en adoptant les notations vectorielles:

$$C_{k} = B_{k} \cdot f(V_{k})$$
 $B_{k} = b_{k1}, b_{k2}, \dots, b_{k5} \dots$ $f(V) = \frac{1}{V}, 1, V, V^{2}, V^{3} \dots$

u kisa kacamatan 1966 mengalah berbagai di

Commence of the Artistation of the

Les données nécessaires au calcul des coûts moyens sont donc les vecteurs B, par catégories de véhicules.

Remarque: Pour chaque catégorie sont donnés les coefficients permettant le calcul du coût d'une part en valeur individuelle et d'autre part en valeur collective. (3 resp. B_k^i et B_k^c).

3 - CALCUL DES COUTS MARGINAUX SOCIAUX

L'expression du coût marginal social pour la catégorie k est:

$$C_{mk} = \sum_{j} T_{j} \frac{\int C_{k}^{c}}{\int T_{j}} + \frac{\int C_{e}}{\int T_{k}} + (C_{k}^{c} - C_{k}^{i})$$

Ce coûts externes.

Evaluation du premier terme

Le premier terme représente le coût marginal de congestion. Avec les notations antérieures il s'exprime:

$$C_{mk}^{l} = \left[\overrightarrow{B}_{k}^{c} \cdot \frac{\overrightarrow{f}(V_{k})}{\overrightarrow{J}V_{k}} \right] \cdot (\overrightarrow{A}_{k} \cdot \overrightarrow{T})$$

Le deuxième terme représente le coût marginal externe.

Il dépend de la nature de la route, plus précisément de sa largeur, et il sera pris constant: $\mathbf{E}_{\mathbf{k}}^{\mathbf{l}}$.

Le troisième terme est la différence négative entre valeur collective et individuelle du coût de transport.

$$C_k^c - C_k^i = (B_k^c - B_k^i) f(V_k)$$

4 - PRISE EN COMPTE DES VARIATIONS DE DEBIT

Les grandeurs à considérer dans le modèle de confrontation sont des coûts moyens, si les calculs sont conduits en prenant des <u>débits</u> moyens annuels, ou les <u>débits moyens sur des périodes</u> pendant lesquelles on constate des variations de débits horaires, il convient de corriger les valeurs calculées sur la base de débits horaires.

S'il y a un seul type de véhicule: Si T est le débit horaire moyen les coûts s'expriment toujours comme des fonctions de T^m où n prend ici des valeurs entre - r et 3.

$$C(T) = a_0 + \sum_n a_n T^n$$

La valeur moyenne C moy pour la période est telle que:

$$C(T) = C \text{ moy } \sum_{p} T = \sum_{n} T \cdot \sum_{n} a_{n} T^{n}$$

Si on connaît les moments d'ordre successifs du débit sur la période étudiée ψ_n

C moy horaire =
$$\sum a_n \frac{\kappa_{n+1}}{\kappa_1}$$

Remarque: On peut approcher 1 par:

er erdûdik eta biliza ya kugu ku

$$k-1 = \frac{1}{k_1} + \frac{\kappa_2 + \kappa_1^2}{\kappa_1^3}$$

Lorsque les calculs seront conduits avec des débits horaires moyens annuels, il sera nécessaire d'appliquer à l'expression polynomiale un vecteur correctif.

Calcul de la valeur moyenne sur une période du coût de transport:

Exemple: Coût de transport horaire:

$$c_k = \frac{b_k}{V} + b_2 + b_3 V + b_4 V^2 + b_5 V^3$$

 $\operatorname{si} \binom{n}{n}$ sont les moments successifs de T.

Les moments successifs de V sont (m,)

$$m_{o} = 1$$

$$m_1 = a_0 + a_1 \mu_1$$

$$m_2 = a_0^2 + 2 a_0 a_1 k_1 + a_1^2 k_2$$

$$m_3 = a_0^3 + 3 a_0^2 a_1 k_1 + 3 a_0^1 a_1^2 k_2 + a_1^3 k_3$$

Moyenne sur une période: Valeur moyenne du coût pour la période sur laquelle sont calculés les moments:

$$C_k = b_{1k/m1} + b_{2k}k + b_{3k} \frac{m_2}{m_1} + b_{4k} \frac{m_3}{m_1} + b_{5k} \frac{m_4}{m_1}$$

5 - VARIATIONS DES DEBITS DANS LE CAS DE PLUSIEURS CATECORIES DE VEHICULES

Le calcul de la valeur moyenne d'un coût pour la catégorie k nécessite le calcul des moments des divers trafics et des produits des trafics deux à deux.

which we calculate
$$(\mathtt{T}^n_k)$$
 , set $(\mathtt{T}^n_k$, $\mathtt{T}^n_1)$ by a set of the k - k

1,3

Il n'est pas possible actuellement d'avoir des estimations directes de ces grandeurs aussi, il convient de faire des hypothèses sur la composition du trafic, sa variation au cours de la période. Les moments du trafic total étant connus, il conviendra de calculer un pourcentage moyen de chaque catégorie de trafic pour calculer les moments du produit de deux trafics.

Exemple: Calcul du coût moyen d'une catégorie de trafic, lorsque circulent plusieurs types de véhicules.

$$C_k = \frac{b_{1k}}{V_k} + b_{2k} + b_{3k} \quad V + \dots$$

$$V = a_0 + \sum a_{ki} T_i$$

Si n sont les moments d'ordre n du trafic total $\frac{\xi}{i}$ $T_i = T$ et x i les pourcentages des différents trafics supposés constants.

$$V_k = a_0 + \frac{\sum_{i=1}^{a_{ki}} x_i^{T_k}}{\sum_{i=1}^{a_{ki}} x_i}$$
 moments successifs : m_n

La valeur moyenne de Ck est alors:

$$C_k = \frac{b_{1k}}{m_1} + b_{2k} + b_{3k} - \frac{m_2}{m_1} + \cdots$$

6 - CONCLUSION: Méthode de calcul des coûts moyens de transport sur une longue période.

Lorsque les périodes de base seront définies, il sera possible d'appliquer la méthode proposée après avoir défini des hypothèses moyennes de composition du trafic T_i .

7 - VALEURS NUMERIQUES

же godin mu kara — e summa a com militari. Подажения проги

and and he was the second

On pourra adopter les valeurs numériques suivantes pour les calculs demandant une bonne précision:

$$m_1 = 3,56/m_1$$

$$m_0 = 1$$

$$m_2 = 1,56 m_1^2$$

$$m_3 = 3,38 m_1^3$$

$$^{m}4 = 8,35 \text{ m}_{1}^{4}$$

$$m_5 = 22,71 m_1^5$$

Pour des calculs demandant moins de précision, prendre T=1,56 T moyen.

Ajustement vitesse. débit véhicules légers, débit de véhicules lourds (T1, T2) realisé pour le XII? Congrés mondial de l' A.I.P.C.R. Rome 1964.

Les mesures de Trafic qui ont permises d'ajuster les lois de variations out été effectuées en 1962-63 dans s pays europiens (Belgique, Espagne, France, Hollande, Italia).

Les résultats obtenus congernent les débits inférieurs

à la capacité pratique.

1 - Viksse moyenne -

A_Route ā 2 voies = a) vehicules du type 1. A
- Jours ordinaires _ V - . 89,25e - 0,065977 T, -0,292732 T. - jours de W.E. . 92,303 _ 0,072184 T, _ 0,617474 Tz

- jours ordinaires el . = 89,752 _0,067528 T, _0,316624 Tz de VE

b) véhicules du type 2 .
_jours ordinaires _ . 66,165 _0,187724 Tz'

-jours de W.E .73,074_0,016465 T, -0, \$67233 Tz -jours ord . a dove . . = 66,417 = 0,206278 Tz ·

B_Roules a 3 voies a) vehicules dutypes . -jours ordinaires -. 88,424 _0,013919 T_ _0,040372 T_,

. . _ . 84,846 _jours de WE.

- jours ord . et WE _ 87,336_0,007791T1_0,036764 T2

b) vehicules dutype 2.

-jours or dinaires - 67,513

-jours de WE 13,571 +0,029810 T, -0,240288 Te

_jours ord, et WE . = 66,412 + 0,018420 T₁ = 0,031 047 T₂,

7973/VII/67-F (Annexe 3) Add. C/28-67 Add.

Représentation analytique de la courbe des débits classés pour la méthode des coûts économiques complets

L'étude des résultats de postes de comptages permanents montre que l'histogramme des débits horaires en rase campagne s'approche bien par une loi gamma.

Il s'agit ici des débits horaires aux sens réunis, toute catégorie de véhicules. La probabilité pour que sur une période d'un an, le débit horaire soit compris entre qu et q + dq s'exprime sous la forme analytique suivante (x);

$$p (q) dq = \frac{n}{\overline{Q}} exp \left(-\frac{n}{\overline{Q}} q\right) \cdot \frac{q^{n-1}}{\overline{Q}} dq$$

n est un paramètre compris entre 1,5 et 2

Q est le débit moyen horaire observé.

Le paramètre n peut être estimé par la méthode du maximum de vraisemblance, lorsqu'on dispose de mesures de trafic horaire bien réparties dans l'année.

which is a property of the

1 - COURBE DES DEBITS CLASSES

THE RESERVE OF THE STREET

2.

La courbe des débits classés est la fonction de probabilités qui se déduit de la loi des fréquences par sommations.

Les calculs qui suivent sont présentés en prenant n = 2

P (q) : Probabilité pour que le débit soit supérieur ou égal à q

^(*) Equation proposée dans l'étude "Rentabilité des travaux routiers", Ministère de l'Equipement, Direction des Routes et de la Circulation Routière.

7973/VII/67-F (Annexe 3) Add. C/28-67 Add.

Hypothèse: n = 2 P (q) =
$$(\frac{2 q}{\overline{Q}} + 1)$$
 exp $(-\frac{2 q}{\overline{Q}})$ étant n = 2

Le nombre d'heures pendant lesquelles un débit q est dépassé sur la section ou le débit moyen est \overline{Q} s'exprime par:

$$N(q) = 8760 P(q)$$

2 - TRAFIC OBSERVE POUR DES HEURES PENDANT LESQUELLES LE DEBIT DEPASSE UN CERTAIN SEUIL q

Q (q) = somme des débits horaires dont le débit est supérieur ou égal à q

$$Q(q) = \int_{q}^{+\infty} \mathbf{r} \cdot \mathbf{p} (\mathbf{r}) d\mathbf{r}$$

 L^{\dagger} expression analytique obtenue avec n = 2 est:

$$Q(q) = 8760 \left(2 - \frac{q^2}{\overline{Q}} + 2 q + \frac{\overline{Q}}{2}\right) \exp\left(-\frac{2q}{Q}\right)$$

3 - APPLICATION: Routes de 7 m débit horaire moyen de 250 vh/h

$$\bar{Q} = 250 \text{ vh/h}$$

- Probabilité pour que le débit soit supérieur ou égal à q = 800 vh/h

$$P(800) = (\frac{2q}{Q}) + 1) \exp(-\frac{2q}{Q})$$
 $P(800) = 1,22 \%$

- Nombre d'heure pendant lesquelles le débit de 800 vh/h est dépassé:
 N (800) = 107 heures
- Débit des heures cumulées dont le trafic est supérieur à 800 vh/h
 - Q (q) = 99.631 vh soit un débit moyen de 930 vh/h pour la période considérée, ce qui représente 4,54 % du trafic total.

7973/VII/67-F (Annexe 3) Add. C/28-67 Add.

Mêmes résultats pour un débit $Q_3 = 1.300 \text{ vh/h}$

- P(1300) = 3,4%
- N(1300) = 3 h
- Q (1300) = 4300 vh, soit un débit moyen de 1430 vh/h.

Les tableaux suivants donne en fonction du débit moyen horaire (variant de 50 à 1000 vh/h) et pratique des divers types de routes techniquement réalisables (2 voies : 800 vh/h, 3 voies : 1300 vh/h, 4 voies : 2000 vh/h - autoroute 2 fois 2 voies : 5000 vh/h) les grandeurs définies en (2) et (3) P, N, Q.

\	_
(N
	1

DEBITS	->	80	00			1.	300			2.0	000	,		5	000	
moyens		2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
900_	13 17 21,3 25,4 29,5 33,4 37,1 40,6 43,8 46,9	802 4490 4860 2230 2570 1910 3250 3550 3840 4110	996	29 36 41 46 51 54,8 58,1 60,9 63,2 65,2	0,5 1,1 2,1 3,5,9 9,15 11,9 11,9 11,9 11,6	1000 1220 1440 1660 1890		7 10,6 14 18 22,8 27 31,1 35 38,6 42,	0,13 0,3 0,57 0,97 1,52 2,21 3,05 4,04 5,15 6,39	451 560		7,43 9,68 12,1 14,7	0,02	1,5	86	0,11
990-	\$1,9		33978		Pro	Léger	ité de	47,5 . de pa	8,86	716	19378 BIT (22,3	a,04	4,	219	20, W11/0/-F (An

- Coefficient d'Equivalence Poids lourds, Véhicules legers - Calcul à partir des Relations linéaires établies dans la Communication des délégués Allemands & Néerlandais (Doc. C.27_66, annère 2, page 4.)

	·		····				1			
TRAFIC	%	c C	OUT F	ES 2 V	oies =	% PL or	Coeffic	ient d'E	quivaler	nce.
	0,20	2,73	0,33	2,64	0,42	2,57	0,50	2,51	0,55	2,47
200 _	0,11	2,79	0,20	2,73	0,27	2,69 2,54	0,33	2,65	0,38	2,62 2,51
300 _	0,07	2,81	0,14	2,77	0,20	2,74 2,63	0,25	2,71	0,29	2,69
400 _	0,05	2,82 2,74	0,11	2,80	0,15	2,77	0,20	2,75	0,23	2,73
500 _	0,04	2,83	0,09	2,81 2,73	0,13	2,79	0,16	2,77	0,20	2,75
600 _	0,04	2,84	0,07	2,82 2,75	0,11	2,80	0,14	2,79	0,17	2,77
700 _	0,03	2,84	0,06	2,82	0,09	2,81 2,76	0,12	2,80 2,75	0,15	2,75
800 _	0,03	2,84	0,05	2,83 2,78	0,08	2,82 2,77	0,11	2,81	0,13	2,80 767
900 _	0,02	2,84 2,80	0,05	2,83 2,79	0,07	2,82 2,79	0,10	2,81 2,78	0,12	2,81 (Annexe 2,78 xe
1000 _	0,02	2,85	0,04	2,84	0,06	2,83	0,09	2,82	0,11	2,81 = 2,79

_ Coefficient d'Equivalence Poids lourds, Véhicules légers_ Calcul à partir des Relations linéaires établies dans la Communication des délégués Allemands & Néerlandais (DOC. C.27_66, annexe 2, page 4.)

	RAFIC			RO	JTES .	3 VOIE	5 = %	PL et Co	efficier	it d'Equ	ivalence	
T	OTAL		%	C	7 %	c _	7 %	- F	T %	ر ک ر	- %	C
	100		0,20	1,12	0,33	1,16	0,42	1,37	0,50	1,47 1,78	0,55 0,71	1,55
	200	_	0,11	1,04	0,20	1,12 1,41	0,27	1,19 1,46	0,33	1,25	0,38	1,31 1,54
	300	_	0,07	1,01	0,14	1,06	0,10	1,11	0,25	1,16 1,35	0,29	1,20 1,39
	400		0,05	1,00 1,18	0,11	1,04	0,15	1,07	0,20	1,11 1,27	0,23	1,15 1,30
	500		0,04	0,99	0,09	1,02	0,13	1,05	0,16	1,08	0,20	1,11
	600		0,04	0,98	0,07	1,01	0,11	1,03	0,14	1,06	0,17	1,08 0
	700		0,03	0,98	0,06	1,00 1,10	0,09	1,02	0,12	1,04	0,15	1,06 ⁶⁷
	800	-	0,03	0,97	0,05	0,99	0,08	1,01	0,11	1,03	0,13	1,05
	900		0,02	0,97	0,05	0,99	0,07	1,00	0,10	1,02	0,12	1,03 1,11
	1 000	-	0,02	0,97	0,04	0,98	0,06	1,00	0,09	1,01	0,11	1,02

7973/VII/67-F (Annexe 4) Add. C/28-67 Add.

DEFINITION DU RESEAU ROUTIER DE L'AXE PARIS-LE HAVRE

Le réseau routier comprend deux types d'information :

- 1. Les sections en rase campagne; chaque section est décrite par un code de largeur, la longueur en km
- 2. La traversée des villes. Un certain nombre de villes sur le réseau constitue des goulets d'étranglement.

Pour les villes, ser · + données la longueur de traversée et la vitesse de traversée en fonction du trafic total.

ANNEXE . Nº 4

7973/VII/67-F (Annexe 4).

Description du réseau routier Peres-Le Haure

la section st debrite par:

son muméro ses extremits' un code de largeur la longeur en hu

le tradic foundier moyer d'aprèle resencement de la circulation 1965

La traverse de agglométations et exclue

1. Code de larger 1. chausse'e unique de moiu, de 5,75m 2 voies
2. 5,76 à 6,5 2 11
3. 6,6 à 8,5 2 11
4. 11 8,6 à 10,0 3 11
5. 10,1 à 11,0 3 11
6. 11, et plus. 34 11
D. Route de fartementale

A - Autoroacte

- 2. Lors que our une section on trouve plusieur, largeurs et de trafice différent sur chaque sous section, on a convenu de retenir la plus faible largeur et le trafic de la sous section la plus lougue.
- 3- Le rode du sommet at olonné plus loin (page 5).
- 4- La traversée de agglomération et comptée parf pour la liste de agglomérations donnée plus loin. (page 6).

4)

		Desc	ription d	u reseau r	outier Paris-le Haure
	Secti	ion			7973/VII/67-F (Annexe C/28-67
Nº s	ommet 1	Sommet 2	largem	. lougeen .	trafic journalier moyen (1965)
4	1	2.	4	2.5	4402
2	1	3	2	17,6	2538
3	4	2	1	23	2131
4	5	2	Λ	39	1924
5	6	2	6	11,9	4402
6	7	1.	3 0 ·	8'	
7	3	2	3.	10,1	1642
8	7	3	3	8,5	2061
9	• 4	6	3	24,5	1349
10	6	ક	4	7	6565
เเ	ے	8	4	16,7	5914
12					
43	24	9	4	9,5	8176
14	10	7	2	14,5	1238
15	24	٥٨	. 3	29,7	3616
16	10	74	4	21,9	1182
13	11	3	3 0	15	
18	11	15	Ð		940
15	11	40	3	13,4	962
20	11	12	3	,	N9 88
21	12	40	4		
22	13	AL	Ð	36,0	63.03
23	12	117	.3	3,7	53.53
24	13	40	3	4,5	362 3317
15	13	14	2	26	3317
16	43	A S	.	14	309
27	13	17	2 A	24,1	
28	40	14 25	A		
	14	41	2	5,7	3689
30	14	23		14,5	11 52
32	· 45	21	35	2.8	
33	15	19	3	19	
34	17	16		71	1522
35	16	18	3	7,1	3139
36	16	52	·		
37	17	18	3	7,8	6006
38	18	19	3	S , .	6006
33	18	41	3 3 2	7,8 5, 26,	3037-
40	38	40	103	10, 5, 4,2	6006
41	10	2.1		5,	
42	20	22	3	4,2	6006
43	21	2.3	L	18,0	2231
44	2.1	32	2	22,0	2231
45	21	22	2	5.	2231
L			<u> </u>		<u> </u>

16 17 18 49 50 51 52 53 54 55	Section 5 23 23 23 23 24 28 26 24 25	26 27 23 32 27 24 24	3 2 2 3 3	3,2 24,1 1,9 10,2	7973/VII/67-F (Annexe 4) C/28-67 trafic pourrable moyen (1965) 4639 1843
16 17 18 49 50 51 52 53 54 55	23 23 23 23 25 24 28 26 24	26 27 29 32 27 24	3 2 2 3 3	3,2 24,1 1,9	4639
17 48 49 50 51 52 53 54 55	23 23 25 24 28 26 24	27 29 32 27 24	2 2 3 3	24,1 1,9	1843
18 49 50 51 52 53 54	23 25 24 28 26 24	29 32 27 24	3 3	24,1 1,9	
19 50 51 52 53 54	25 24 28 26 24	32 27 24	3 3	19	1842
50 51 52 53 54	24 28 26 24	27 24	3	10,2	1
50 51 52 53 54 55	28 26 24	27 24	3		1641
51 52 53 54 55	28 26 24	24	<u> </u>	12,5	4161
52 53 54 55	26 24	Į.	4	11,9	8871
53 54 55	24		7	6,1	4639
54 55		41	اعا	46	3148
55		26	3 A	4,6	
	27	43	3	15 6	4161
/		17	1	15,4	4001
56	37	1) Ď	15	
57	29	26	A .		
58	29	30	Α.		
59	29	39	A		
60	30	2-8	4	5,9 3,5	8512
61	. 3i 🦠	30	2	5,5	5327
62	32	30	2 3 2	3,2	3556
63	31	3.7	1 20 1	16	
64	35	31	2	8	5327
65	31	39	_		
66	32	31	3	2.3	1616
	33	3%	1	3,7 15.6	321
67			5	15,6 15,6	7883
	33	34	3	13,6	· · · · · · · · · · · · · · · · · · ·
69	33	22	1 _ I	18,3	6006
70	38	3.5	A		
71	38	35	A		
72	38	50	A		
73	33	32	1 2	17,5	3189
74	34	32	1	25,2	645
75	34	36	2	10,6	1721
76	34	36 50 36	2 2 2	25, 2 10, 6 6, 8 10,7 18,3	7020 5327 578 799
74	35	36	2	10,7	5327
76 71 78 79 80	36	37 51 36 37	2	18.3	578
49	36	Si		17.7	799
an	49	36	3	215	6536
81	3.0	32		3 6	321
	35 36 36 48 35 37	1 7.3	1 5 1	16	3=1
31	24	42	3 2 D 3	14.	2161
83	42 45 43	43		11/8	3151
34	45	42	2	7 176	4766 1886 4412
85	45	44	3	25,4	1886
86	44 58	46	3	10,S	4412
87	58	46	3 3 3 D 5	18/3 17,5 16,8 14,5 10,1 12,6 12,6 14,6	4806
87 88 89	46	47 47	D	10	
89	45	47	5	17	7160
30	48	So	2	14.6	951

Description do reseau routler Para-le Haure

·	Sec	tion			
N° 5	ou wet a	Somuet 2	largan	lougun	trafic fourneller moyen (1965)
91	50	49	A		
32	48	49			
93	45	S2.	A		
34	52	48	3	11,2	6366
35	52	SI	D	9,0	
96	52	45	2	19,2	1726
57	SL	53	3	12,8	4768
38	52	54	3 A	/ /	
99	SZ	SS	4	8,6	18.783
100	53	SI	1	19,5	445
NON	53	58	1	15,2	1653
AOL	53	57	3	13/8	4412
103	53	54	3	′	
104	54	\$5	··.		.*
105	54	56			
106	\$6	57		V (1)	
107	56	60	8	15,6	7639
108	\$6	61	A	/	
105	55	56	4	1,9	21 235
ANO	47	57	D	18	
M	57	60	5	7,5	14 604
112	53	58	6	6,1	16.812
113	60	61			
114	47	\$8	5	7	7160
115	55	60			•
116	58	60	6	6,1	16812

	ode des sommets du PARIS-LE HAVRE	- Australia A	c/28-67	
N° du sommet	Agglonalization on			-
N our sommer	bifucation,	-		
	bi zucumou-		·	
	1		•	
4	LE HAVRE	46	MARINES	
2	BOLBEC	47	VILLENEUVE	
3	TANCARVILLE 10	48	BONNIÉRES	
4	FECAMP	49	(sortie d'Auto	route)
5	STVALERY EN CAUX	50 .	CHAUFOUR	•
6	VALLIQUERVILLE	51	VETHEUIL	
7	LILLEBONNE	52	MANTES	
8	YVETOT	53	MELAN	
ۏ	PAVILLY	54	(sorked' Auto	roule)
10	CAUDEBEC	. 55	FLINS	•
. 44	TANCARVILLE RG.	56	ORGEVAL	
18	LISIEUX	57	POISSY	
13	PONT AUDEMER	58	POHTOISE	
14	BOURG ACHARD	59	PE de CLIGNA	NCOURT
15	MONTFORT S/RISLE	60	PE de HEUILL	7
16	BERNAY	61	PE de Sicion	SD.
47	LE THEIL NOLENT			
18	MALBROUCK		•	
19	FEUQUEROLLES			
20	MAISON-ROUGE			·
21	LE NEUBOURG	•		
22	LES 4 ROUTES		•	
23	ELBEUF			
24	ROUEN			•
25	(sortie d'autoroute)	·		
26	GRAND COURONNE	•		
27	FLEURI S/ADELIE	•		
28	PONT DE L'ARCHE - PITRES			•
28	(sortie d'autoroute)		•	
30	STCYR			
31	HEUDEBOUYILLE			
32	FBUVIERS			
33	EVREUX		•	
34	PACY S/EURE			
35	GAILLON	,		
36	VERNON		•	•
37	LES ANDELYS			,
38	(sortie d'autoroute)	•		•
39	(sortie d'autoroute).		•	
40	PONT AUDEMER			
44	MAISON BRÛLÉE			
42	MOUFLANES		· ;	
43	ECOUIS			
44	GISORS			
45	MAGNY			

```
Relations globales enhe le nombre d'accidents
CALCUL des
                      el le TRAFIC suivant les Types de Voies.
COÚTS EXTERNES.
                                                  7973/VII/67-F (Annexe 5)
    Les ajustements ontété réalisés sur l'ensemble des Sections
                              ANNEXE 5
   du Réseau Routier de l'axe PARIS_ Le HAVRE à l'exclusion des
   Sections autoroutières et des traversées d'Agglomérations.
par an = Débit moyen = 2 à 300 Yh/H = % PL = 0 à 20.
          \times 1 = 204,2 + 0,338 \times 6 (0,05) R = 0,79
  6m.
                         + 0,12 × 6 (0,01) R= 0,78
         1 × 2 = _126
(27 obs.)
                                 ×6 (0,1) R.0,83
          \times 3 = -129
                         + 0,76
                                                        1000 Nb accidents
          × 1 = _484
                         + 0,66. × 6 (0,13) R= 0,62
                                                        1000 Nb detués.
  7m.
          x 2= _60
                         + 0,075 × 6 (0,02) R = 0,41
                         + 1,09 × 6 (0,23) R = 0,61
          × 3 = _764
(37 obs.)
                  Débit moyen a 3 à soo Vh/H _
                        + 0,56 × 6 (0,22) R=0,54
                                                        1000 Nb deblessés
          ×1=-118
  9m.
          × 2 = -119
                         + 0,06 × 6 (0,01) R. 0,66
(14 obs.)
                         + 1,23 × 6 (0,24) R. 0,80
           x 3 . _3200
                                                         total jour moyen
           × 1 =
                                                            annuel
 10750
                         + 0,03 × 6 (0,012) R. 0,65
          × 2 =
 er plus.
          × 3 =
        Débit horaire moyen total _ T=
          (variance sur le coefficient de
                     corrélation)
       Les ajustements faisant intervenir les 2 variables PL et VL sont
     tous peu significatifs. Les coefficient de Corrélation sont cepen.
     dant très stables, ce que permet de faire l'hypothèse (en tenant compte des variations de débits) que le rapport des dérivés par-
     Hels par rapport au Trafic VL et PL est de l'ordre de 4 pour
     les routes de 7m, en inférieur à la 12 pour les autres cas.
     Coûts unitaires par accident
                                         = 2.500, Frs
                                         150.000,
                          par tue
                                            5.500
                          par blesse
     . Coût externe hordire/km =
            C_e = (150.000 \times 2 + 5.500 \times 3 + 1500 \times 4) + 8,76.10^{6}
     . Couts marginaux externes /au Trafic horaire
           ace
                   (150.000 3×2 + 5.500 3×3 + 2.500 3×1) 8,76.404
     Evaluation des coûts marginaux externes.
         Cette évaluation représente la valeur moyenne pour une
     piriode d'un an _ Les valeurs numériques obtenués sont lex
     suipantes (dérivées du coût externe horaire par rapport au Trafic
```

6m,

4,1 (6) Sion connait le% des PL, les valeurs respectives des cime sont.
VL. (1-0) cme PL. (1+34) che avec hypotèse équivale

hovaire) _ largeur =

7m,

3,3_(c)

PL. (1+34) che avechypotèse équivalence 4.

9m,

3,06

1075 on +