

PREDIT - Groupe Opérationnel IV

POD

Proposition de nouvelles Organisations De transport combiné par route et fleuve sur le réseau Freycinet

Subvention n° 09 MT CV 41

Rapport final

Émetteur du document: TL & Associés

Date d'émission: 18/11/2011

Suivi des modifications

Version		Statut	Date Responsable 14/11/11 L. Walle 18/11/11 Tous / L. Wall	
0 Version		Version initiale (TLA)	14/11/11	L. Walle
	1	Version finale intégrant les commentaires des partenaires (VNF, CETMEF, Lebéfaude)	18/11/11	Tous / L. Walle

SOMMAIRE

I.	introaud	CTION	9
I.A.	Contex	te et objectifs du projet	9
I.B.	Déroul	ement et rôle des partenaires du projet	10
I.C.		t contenu du document	
I.D.		dologie retenue	
	· · · · · · · · · · · · · · · · · · ·		
<i>II</i> .	État des	lieux du transport fluvial Freycinet	12
II.A.	Le rése	au Freycinet	12
	II.A.1. Inf	rastructure existante	12
	II.A.1.a)	Le réseau de voies fluviales au gabarit Freycinet	
	II.A.1.b)	Les villes et agglomérations	15
	II.A.1.c)	Les ponts et écluses	16
	II.A.2. Ac	tivité du réseau Freycinet	16
	II.A.2.a)		16
		Trafics des voies fluviales	19
II.B.			21
	II.B.1. Ex	emples de bateaux	21
	II.B.1.a)	Caractéristiques typiques	21
	II.B.1.b)	Architecture et fonctionnement	22
	II.B.1.c)	Entretien des bateaux	22
	II.B.1.d)	Consommations énergétiques	
	II.B.2. Flo		24
	II.B.2.a)	Flotte fluviale active en France	24
	II.B.2.b)	Flotte au gabarit Freycinet	
	II.B.3. CO	ncepts de bateaux innovants	26 26
	II.B.3.b)	Freycinet 2000Autres initiatives	20 27
II.C.	-	tique	20
II.C.	- 0		
	II.C.1. OI	ganisation des transports	
	II.C.1.b)	Flux de navigation	
	II.C.1.c)	Modes de navigation	20
	II.C.1.d)	Manutention	30
	II.C.1.e)	Gestion administrative et commerciale	
	II.C.1.f)	Concurrence petits et grands gabarits fluviaux, modes ferroviaire et routier	
	II.C.2. Se	rvices existants	32
	II.C.2.a)	Transport de déchets	32
	II.C.2.b)	Transport de matériaux sur le canal des Vosges	
	II.C.2.c)	Autres services	
	II.C.3. Le	traitement de l'information	
	II.C.3.a)	Échanges de données	34
	II.C.3.b)	Services d'information fluviale	
	II.C.3.c)	Système d'Identification Automatique	
II.D.		nie et finance	
II.E.		eurs	
		s acteurs de la logistique fluviale	
	II.E.2. Le	s principaux acteurs du réseau Freycinet	
		formation	42
	II.E.4. La	demande des acteurs	42
	II.E.4.a)	Les bateliers	42
	II.E.4.b)	Autres acteurs de l'écosystème fluvial	43

III.	Diagnostic	<u> </u>	45
		de la filière	45
		cts logistiques	
		cts organisationnels	
	III.A.3. Aspe	cts techniques	45
	III.A.4. Aspe	cts économiques	46
	III.A.5. Aspe	cts territoriaux	46
III.B			
	III.B.1. Carao	téristiques des services à déployer	48
		Organisation du service	
		Gestion commerciale	
		Marchés visés	
		Acteurs visés	
		Cibles de performances et de qualité de service	
		ositions d'actions	
		Améliorer l'image de la batellerie et le confort du batelier	
		Faire évoluer l'organisation de la filière	
		Rechercher les gains de productivité	
	III.B.3. Évolu	tions possibles	52
	III.B.3.a)	Organisation	52
	III.B.3.b)	Logistique	53
	III.B.3.c)	Financement	54
	III.B.3.d)	Formation	55
	III.B.3.e)	Gestion de l'infrastructure	55
IV.	Propositio	n de nouvelles solutions techniques pour le transport fluvial	56
	•	tiques détaillées du gabarit Freycinet	
14.0	IV B 1 Cogu	s possibles	5 <i>7</i> 58
	IV.B.1. Coqu	e et structure	58 58
	IV B 3 Gesti	orisationon énergétique	50 59
	IV B / Mani	itention	59 59
	IV B 5 Const	tructiontruction	55 60
		me d'information et de communication	
		mentation	
IV C		des fonctionnalités	
		on de solutions pour le Freycinet	
IV.E	. Liabulati	l'AUTOMOTEUR PORTE-CONTENEURS 20'	04
IV.E	Detail de	fination du batany agray	66
		fication du bateau conçu	
		téristiques principales	
		lité du porte-conteneurs	
		raintes réglementaires, techniques et d'exploitation	
	IV.E.4.a) IV.E.4.b)	Contraintes réglementaires	67
	IV.F.4.c)	Contraintes techniquesContraintes d'exploitation	68
	IV.E.5. Mode	élisation PC 20'	68
IV.F		modèle AUTOMOTEUR PORTE-CONTENEURS	
		eneurs	
	IV.F.2. Snéci	fications du bateau	69
		lité du porte-conteneurs	
	IV.F.4. Mode	élisation PC 7' et 10' HC	70 71
			· =

		Logistique / Manutention	
IV.G	. Dét	ail du modèle AUTOMOTEUR PORTE-PALETTES	73
		Palettes	
		Spécifications du bateau	
		Stabilité du porte-palettes	
	IV.G.4	Modélisation	
	IV.G.4.	ModélisationLogistique / Manutention	7 1 75
	10.0.5.	Logistique / Manutention	/3
V.	Étude	e de scénarios « Freycinet » (évaluation du matériel et exemples	
d'o	rganis	ation)	<i>76</i>
	Obj		 76
		chode d'élaboration des nouveaux scénarios	
•••	VR1	Cas étudiés (construction des scénarios)	76
	V.D.1.		70 78
		Sources des données Données techniques, économiques et environnementales (communes aux scénarios)	
v.C.		nario 1 : transport fluvial en courte distance de déchets conteneurisés (10'HC	•
		La situation de référence	83
	V.C.1		83
	V.C.1	L.b) Données de base	83
	V.C.1	L.c) Calcul des coûts	84
	V.C.1	L.d) Calcul des coûts externes	85
		La situation cible (scénario 1)	
		2.a) Schéma cible	
		2.b) Données de base du scénario	
	V.C.2	2.c) Calcul des coûts	90
	V.C.2	2.d) Calcul des coûts externes	93
V.D.		nario 2 : transport fluvial en courte distance de marchandises générales palet	
	V.D.1.	La situation de référence	
	V.D.:		95
		1.b) Données de base du scénario	
		1.c) Calcul des coûts	
		1.d) Calcul des coûts externes	
		La situation cible (scénario 2)	
		2.a) Schéma cible	97
		2.b) Données de base du scénario	97
	V.D.		
	V.D.	2.d) Calcul des coûts externes	102
V.E.		nario 3 : transport fluvial en zone longue de métaux conteneurisés (10'HC ou	7′) _ 103
	V.E.1.	La situation de référence	103
	V.E.1	L.a) Schéma actuel	104
	V.E.1	L.b) Données de base du scénario	104
	V.E.1		
	V.E.1		
		La situation cible (scénario 3)	106
	V.E.2	,	106
	V.E.2	2.b) Données de base du scénario	107
	V.E.2	2.c) Calcul des coûts	109
	V.E.2	2.d) Calcul des couts externes	111
V.F.	Syn	thèse et analyse des scénarios	112
	V.F.1.	Matériel	112
	V.F.2.	Emplois	113
	V.F.3.	Résultats économiques	114
		Résultats environnementaux (émissions de CO2 et coûts externes)	
			_

V	.F.5. Synt	thèse	118
V	.F.6. Auti	res scénarios envisageables	118
VI. B	Bilan, pré	conisations et conclusions	119
		ements des scénarios	
VIR	Actions	prioritaires	120
VI.D.	IR 1 Ran	enser le matériel (bateaux et manutention)	120
		enser les schémas de transport	
V V	ID2 Into	rvenir sur le réseau et les infrastructures d'accueil	123
		eliorer la commercialisation des services	
		aloriser la filière (formation)	
VI.C.	vaiorisa	tion du projet	127
		situations favorables au transport fluvial au gabarit Freycinet	
		ui encouragent à dresser la feuille de route de son développement, dès à présent	
V	I.C.3. Et m	nettre en place un test grandeur réelle avant une mise en œuvre plus large	127
VII. A	NNEXES	;	128
VII.A.	Acronym	nes et termes techniques	128
	_	phie	
V	II.B.1. Ran	ports et documentation	131
		pjets de recherche et développement	
		s Internet	
VII.C.		a des entrations effectués	133
V V	II.C.1. LIST	e des entretiens effectuésnptes-rendus d'entretien	133
V			
	VII.C.2.a)	AUTFCFT (1 ^{er} entretien)	134
	VII.C.2.b)	CFT (2 nd entretien)	134
	VII.C.2.d)	SCAT	135
	VII.C.2.e)	VNF (1 ^{er} entretien)	135
	VII.C.2.f)	Cabinet Lebéfaude	 136
	VII.C.2.g)	DGITM	136
	VII.C.2.h)	VIM	136
	VII.C.2.i)	ARKEMA	
		SITA	137
	VII.C.2.k)	CAF	138
	VII.C.2.l)	EPF	138
	VII.C.2.m) VII.C.2.n)	ITB	138 138
	VII.C.2.0)	Mr MichelSAGRAM	138 139
	VII.C.2.p)	SAGRAMVNF (2 nd entretien)	139
	VII.C.2.q)	CNBA	140
	VII.C.2.r)	MARIN	141
	VII.C.2.s)	Mercurius_	 142
	VII.C.2.t)		142
	•	Overmeer	142
VII.D.	Données	techniques des bateaux étudiés et modélisés	
		pilité du porte-conteneurs 20 pieds	
		oilité du porte-conteneurs 7 pieds et 10' High Cube	
		oilité du porte-palettes	
		es scénarios d'évaluation	147

Liste des figures

Figure 1 : organisation du projet	10
Figure 2 :répartition des voies fluviales par gabarit	12
Figure 3 : répartition des voies fluviales par gabarit et par bassin	13
Figure 4 : détails sur les caractéristiques des voies fluviales de petit gabarit	14
Figure 5 : villes sur le réseau Freycinet	16
Figure 6 : évolution comparée des trafics Freycinet (en bleu) et grand gabarit (en vert) (source : VNF, 2009)	17
Figure 7 : marchandises transportées au gabarit Freycinet	17
Figure 8 : tonnage de marchandises transportées au gabarit Freycinet par classes NST – origines (source : VNF, 2010)) 17
Figure 9 : tonnage de marchandises transportées au gabarit Freycinet par classes NST – destinations (source : VNF, 2	2010)
Figure 10 : T-Km transportées au gabarit Freycinet par classes NST(source : VNF, 2010)	18 18
Figure 11 : décomposition de la classe NST 6 (source : VNF, 2010)	 18
Figure 12 : décomposition de la classe NST 0 (source : VNF, 2010)	 19
Figure 13 : dimensions typiques des unités fluviales	21
Figure 14 : exemples de bateaux au gabarit Freycinet	 22
Figure 15 : évolution de la flotte (en nombre d'unités) (source : la flotte fluviale Française de marchandises active er VNF, 2009)	— n 2008, 24
Figure 16 : évolution de la flotte (en tonnes de port en lourd) (source : la flotte fluviale Française de marchandises a	 octive
en 2008, VNF, 2009)	25
Figure 17 : évolution du nombre de barges en France entre 1998 et 2007 (source : la flotte fluviale en 2007, VNF, 20	-
Figure 18 : structure de la flotte Européenne en port en lourd et en nombre d'unités (source : la flotte fluviale en 20	
VNF, 2008)	25
Figure 19 : projet Freycinet 2000 (source : CNBA)	26
Figure 20 : territoires fréquentés par les bateliers (source : ANTEOR, 2005)	29
Figure 21 : exemples de techniques de manutention fluviale	31
Figure 22 : répartition des postes de coûts de bateaux Freycinet (source : ITB, 2010)	
Figure 23 : âge moyen des bateliers (source : ANTEOR, 2005)	
Figure 24 : darses du réseau Freycinet	47
Figure 25 : zone d'influence des agglomérations du réseau Freycinet	48
Figure 26 : modélisation du porte-conteneurs 20' sur 2 niveaux	
Figure 27 : illustration des conteneurs 7' et 10' HC	69
Figure 28 : bateau Freycinet « porte-conteneurs » sans logement	
Figure 29 : bateau Freycinet « porte-conteneurs » avec logement	
Figure 30 : vues 3D du porte-conteneurs 7' – 10' HC	
Figure 31 : bateau Freycinet « porte-palettes » sans logement	74
Figure 32 : vues 3D du porte-conteneurs 7' – 10' HC	<i>75</i>
Figure 33 : flux « concentrés » adaptés au report modal	<i>77</i>
Figure 34 : flux « diffus » non adaptés au report modal	<i>77</i>
Figure 35 : schéma de référence scénario 1	83
Figure 36 : schéma cible scénario 1	
Figure 37 : schéma de référence scénario 2	95
Figure 38 : schéma cible scénario 2	97
Figure 39 : marchandises transportées dans le scénario 3	103
Figure 40 : schéma de référence scénario 3	104
Figure 41 : schéma cible scénario 3	106
Figure 42 : répartition des coûts pour chaque scénario	114
Figure 43 : comparatif des coûts par scénario	
Figure 44 : variation de paramètre (scénario 2) : exemples d'impacts	116
Figure 45 : comparatif des coûts par scénario intégrant les externalités	117
Figure 46 : courbe des aires (à g.) et stabilité transversale (à dr.) pour le porte-conteneurs 20' chargé à 30 tonnes	144
Figure 47 : courbe des aires (à g.) et stabilité transversale (à dr.) pour le porte-conteneurs 20' chargé à 136.8 tonnes Figure 48 : courbe des aires (à g.) et stabilité transversale (à dr.) pour le porte-palettes avec un tirant d'eau de 1,8m	_

Liste des tableaux

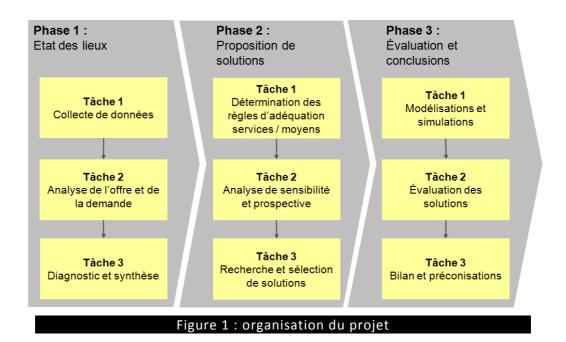
Tableau 1 : caractéristiques des gabarits fluviaux (source : VNF)	12
Tableau 2 : répartition du petit gabarit par zones administratives de VNF (source : VNF)	 14
Tableau 3 : indicateurs par unité de consommation énergétique et d'émission de CO2 (Hypothèses : voyages à vie	
31% ; coefficient de chargement :80 à 100%) (source : étude sur le niveau de consommation de carburant des un	
fluviales Françaises, ADEME/VNF/TLA, 2005)	cs 23
Tableau 4 : caractéristiques du bateau Freycinet 2000 (source : CNBA, 2003)	23 26
Tableau 5 : caractéristiques économiques d'un bateau Freycinet (source : ANTEOR, 2005)	
Tableau 6 : potentiel de flux de marchandises conteneurisées et de vrac par catégorie NST (src TLA)	
Tableau 7: caractéristiques d'un bateau Freycinet actuel	50 56
Tableau 8: caractéristiques d'un poids lourd	50 57
Tableau 9: caractéristiques des conteneurs les plus courants	5/
Tableau 11 : caractéristiques des conteneurs retenus pour l'étude	
Tableau 12 : caractéristiques du bateau porte-conteneurs modélisé	
Tableau 13 : caractéristiques du bateau porte-palettes modélisé	73
Tableau 14 : hypothèses de construction des scénarios	
Tableau 15 : scénarios retenus	80
Tableau 16 : capacités de chargement des différents types de bateaux	
Tableau 17 : coûts d'exploitation du transport fluvial	81
Tableau 18 : coûts d'exploitation du transport routier	
Tableau 19 : subventions captables pour le transport fluvial	82
Tableau 20 : coûts externes liés au transport	82
Tableau 21 : flux de référence pour le scénario 1	83
Tableau 22 : coûts d'exploitation du scénario 1 (référence)	85
Tableau 23 : coûts externes pour le scénario 1 (référence)	85
Tableau 24 : flux cibles pour le scénario 1	86
Tableau 25 : total des coûts pour le scénario 1 (cible)	92
Tableau 26 : coûts externes pour le scénario 1 (cible)	93
Tableau 27 : flux de référence pour le scénario 2	94
Tableau 28 : coûts d'exploitation pour le scénario 2 (référence)	96
Tableau 29 : coûts externes pour le scénario 2 (référence)	96
Tableau 30 : flux cibles pour le scénario 2	 97
Tableau 31 : total des coûts pour le scénario 2 (cible)	102
Tableau 32 : coûts externes pour le scénario 2 (cible)	
Tableau 33 : flux de référence pour le scénario 3	
Tableau 34 : coûts d'exploitation pour le scénario 3 (référence)	 105
Tableau 35 : coûts externes pour le scénario 3 (référence)	106
Tableau 36 : flux cibles pour le scénario 3	100
Tableau 37 : total des coûts pour le scénario 3 (cible)	
Tableau 38 : coûts externes pour le scénario 3 (cible)	
Tableau 39 : synthèse des coûts matériels	
Tableau 40 : synthèse des créations d'emploi	113
Tableau 41 : synthèse des résultats économiques	
Tableau 42 : synthèse des résultats environnementaux	117
Tablass 43 sanajan aranda das sajangias	117 119
Tableau 44 : jeu d'acteurs des scénarios de report modal fluvial	
Tableau 45 : glossaire des acronymes et définitions navales	
Tablass AC satabilitá de parta apritama y 20%	130 145
Tableau 47 : stabilité du porte-conteneurs 20	145 146
rabicau +/ . stabilite uu porte-conteneurs / et 10 TiC	140

I. Introduction

I.A. Contexte et objectifs du projet

Le transport fluvial de marchandises est un mode de transport reconnu comme vertueux sur le plan environnemental. Sûr, fiable, moins émetteur de gaz à effet de serre que le mode routier, son développement est aujourd'hui mis en avant au niveau français et européen dans le cadre de la lutte contre le réchauffement climatique. Une plus grande utilisation du mode fluvial est un axe de développement aux enjeux importants pour le futur, qui ne pourra que devenir de plus en plus pertinent compte tenu de la congestion des réseaux routiers, des coûts de carburant et des problèmes de pollution atmosphérique, et de leurs évolutions prévues... Sur les dix dernières années, les volumes de fret fluvial sont en hausse. Cependant la croissance est essentiellement liée aux grands gabarits et on constate une diminution des trafics sur le petit gabarit. On observe par ailleurs une baisse assez significative de la flotte des bateaux Freycinet depuis 2000, et sur certaines périodes et sur certains marchés une offre de cale insuffisante. Le petit gabarit ayant vocation à assurer la capillarité de l'ensemble du réseau, il semble important de réfléchir à de nouvelles solutions (services / moyens) lui permettant de participer et même contribuer à l'essor du transport fluvial. Or, de manière à être viables et pérennes, les solutions à mettre en œuvre doivent présenter une faisabilité, une acceptabilité, une rentabilité et une efficacité suffisantes. Le navire est un des facteurs clés du succès d'un service, par sa bonne adéquation aux trafics (capacité, vitesse), aux caractéristiques portuaires et de navigation (gabarit), et aussi par ses performances, et son efficacité économique et environnementale. Plusieurs types d'unités fluviales existent, mais n'ont pas été dimensionnées afin d'optimiser une offre visant l'utilisation du réseau Freycinet. En mettant en adéquation l'offre et la demande, i.e. en concevant les moyens (navires, manutention, SI...) afin qu'ils répondent aux exigences des services auxquels ils participeraient et des logistiques dans lesquelles ils s'inscriraient, des résultats bien meilleurs (économiques, environnementaux) pourraient sans doute être obtenus.

POD a pour objectif d'étudier les possibilités de mise en œuvre de nouveaux services de transport combiné route-fleuve sur le réseau Freycinet reposant sur différentes composantes innovantes à caractériser :


- Une unité fluviale au gabarit Freycinet (automoteur ou barge et pousseur);
- Des équipements de manutention embarqués sur le navire et/ou fixes pour les interfaces fleuve / route;
- Des moyens routiers pour les pré et post acheminements ;
- Des systèmes d'information et de communication (intégrant la traçabilité).

I.B. Déroulement et rôle des partenaires du projet

Le projet POD a été découpé en 3 phases distinctes qui consistent à :

- Dresser un état des lieux opposant la demande (tirée de l'expression du besoin des acteurs concernés) et l'offre (services, navires, concepts, briques technologiques existants) pour conclure au travers d'un diagnostic de la situation sur les caractéristiques des services à déployer et les pistes de développement à envisager;
- Proposer des solutions adaptées, sur la base de règles d'adéquation entre services et solutions (techniques, organisations) et de leur sélection;
- Caractériser les solutions et évaluer les impacts liés à leur implémentation afin de juger de leur viabilité et de conclure le projet au travers de préconisations appropriées.

POD est porté par quatre partenaires, intervenant de façon spécifique et complémentaire :

- Voies Navigables de France (VNF), pour les aspects circulation et infrastructure fluviale;
- Le Cabinet Lebéfaude, pour son expertise architecturale navale;
- Le Centre d'Études Techniques Maritimes Et Fluviales (CETMEF), pour les aspects conditions de navigation et communication ;
- TL&Associés (TLA) pour la coordination technique et administrative du projet, et la maîtrise des aspects d'évaluations technico-opérationnelle et économique grâce à son expertise de des domaines de la logistique, de la manutention, des NTIC et des aspects environnementaux et connaissance des schémas d'aides possibles.

I.C. Objet et contenu du document

Le présent document constitue le rapport final du projet POD et présente les résultats obtenus au cours des différentes phases du projet.

Le présent rapport détaille ainsi :

- L'état des lieux de la situation opposant l'offre à la demande (chapitre 2) ;
- Le diagnostic et un bilan de la situation (chapitre 3);
- Les propositions de solutions techniques de bateaux (chapitre 4) ;
- Les scénarios opérationnels d'évaluations (chapitre 5);
- Le bilan et les préconisations de l'étude (chapitre 6) ;
- Les annexes (chapitre 7).

I.D. Méthodologie retenue

Les données nécessaires aux analyses ont été obtenues au travers d'un double processus de collecte de données « papier » et « terrain ». Il a permis d'obtenir une vision la plus complète possible de la problématique mêlant à une vision plus théorique une approche plus pragmatique.

Les données papier (cf. bibliographie en annexe) ont été obtenues au travers de :

- La synthèse des connaissances, des études et des bases de données des partenaires;
- Une recherche documentaire notamment sur Internet;
- La prise en compte d'études et de statistiques existantes issues de bureaux d'études, d'organisations, nationales ou européennes.

Les données terrain sont issues d'une série de 22 d'entretiens semi-directifs de professionnels du secteur (cf. liste en annexe). Dans ce cadre, il s'est agi de :

- Sélectionner le panel d'acteurs à contacter sur la base de différents critères de représentativité (activité, niveau dans la structure...);
- Construire les questionnaires à utiliser au cours des entretiens en les adaptant à la typologie de l'acteur ;
- Organiser et réaliser les entretiens, puis rédiger les comptes-rendus et les transmettre aux acteurs interrogés pour validation (cf. comptes-rendus en annexe).

II. État des lieux du transport fluvial Freycinet

II.A. Le réseau Freycinet

II.A.1. INFRASTRUCTURE EXISTANTE

II.A.1.a) Le réseau de voies fluviales au gabarit Freycinet

Le domaine public fluvial français comprend au total 18 000 km de voies d'eau dont 8 500 sont navigables par des unités de transport :

- Un peu moins de 6 000 km sont régulièrement empruntés, dont 1621 km permettent le passage de convois de 3000 tonnes et plus,
- 1 500 km servent essentiellement à la plaisance,
- Le reste n'est plus utilisé pour la navigation.

Les voies fluviales sont distinguées par leurs gabarits (grand, moyen et petit), qui sont classés en fonction du port en lourd admissible des unités fluviales (cf. tableau suivant).

Gabarit	Classe	Port en lourd > 3000 tonnes	
	6	> 3000 tonnes	
Grand gabarit	5	1500 à 3000 tonnes	
	4	1000 à 1500 tonnes	
Moven ashavit	3	650 à 1000 tonnes	
Moyen gabarit	2	400 à 650 tonnes	
Datit gabarit	1	250 à 400 tonnes	
Petit gabarit	0	50 à 250 tonnes	

Tableau 1 : caractéristiques des gabarits fluviaux (source : VNF)

Le petit gabarit, dit "Freycinet", représente les unités comprises entre 250 et 400 tonnes (classe 1). Dans la pratique la classe 0 (de 50 à 250 tonnes) n'est plus utilisée pour le transport.

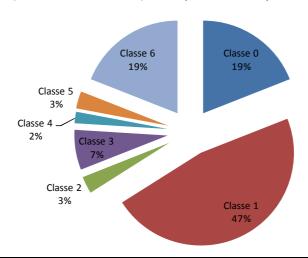


Figure 2 :répartition des voies fluviales par gabarit

Avec plus de 60% de la longueur des voies fluviales, le petit gabarit représente ainsi un maillage important au sein du réseau français (cf. figure suivante).

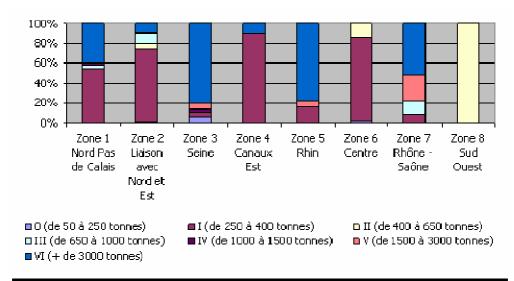


Figure 3 : répartition des voies fluviales par gabarit et par bassin

Le gabarit Freycinet est une norme régissant la dimension des écluses de certains canaux, mise en place par une loi du programme de Charles de Freycinet datant du 5 août 1879. Elle portait la longueur des sas d'écluse à 39 m pour 5,20 m de large, afin qu'elles soient franchissables par des péniches de 300 ou 350 tonnes selon le mouillage. En conséquence, les bateaux au gabarit Freycinet ne doivent pas dépasser 38,5 m sur 5,05 m. On parle ainsi de bateaux ou de péniches Freycinet. Suite à cette norme, de nombreux travaux ont été engagés à la fin du XIXème et au début du XXème siècle pour moderniser les canaux et harmoniser la navigation fluviale. Les voies navigables intérieures d'Europe sont classées selon leurs dimensions et leurs capacités d'accueil des bateaux en 8 classes définies par la Conférence Européenne des Ministres des Transports (CEMT). Le gabarit Freycinet correspond au gabarit européen de classe I.

Le tableau qui suit donne la répartition du petit gabarit par zones administratives de VNF.

		0 (de 50 à 250 tonnes)	I (de 250 à 400 tonnes)
Zone 1	km1	23	310
Nord Pas de Calais	km utilisé	2	240
	%	0,45%	53,69%
Zone 2	km	13,00	870,00
Liaison avec Nord et Est	km utilisé	13	793
	%	1,20%	73,02%
Zone 3	km	130	47
Seine	km utilisé	35	32
	%	5,93%	5,42%
Zone 4	km	0,00	1407,00
Canaux Est	km utilisé	0	1354
	%	0,00%	89,61%
Zone 5	km	0	66
Rhin	km utilisé	0	39
	%	0,00%	16,60%
Zone 6	km	14	845
Centre	km utilisé	14	657
	%	1,80%	84,34%

1 Longueur statistique

Zone 7	km	197	96
Rhône - Saône	km utilisé	0	62
	%	0	8,97%
Zone 8	km	496	229
Sud Ouest	km utilisé	0	0
	%	0,00%	0,00%
Zone 9	km	787	132
Ouest	km utilisé	0	0
	%	0	0
Total	km	1660	4002
	km utilisé	64	3177
	%	1,19%	59%

Tableau 2 : répartition du petit gabarit par zones administratives de VNF (source : VNF)

Les voies fluviales du réseau présentant un enfoncement autorisé fixé à 1,80m (ce qui correspond à une limite de 250 t de port en lourd) sont le canal de la Somme, la Sambre, le canal de la Sambre à l'Oise, le canal de Briare, le canal latéral à la Loire, le canal de Roanne à Digoin, le canal du Centre, le canal du Rhône au Rhin, la Saône, le canal de Bourgogne, et le canal de Sarre.

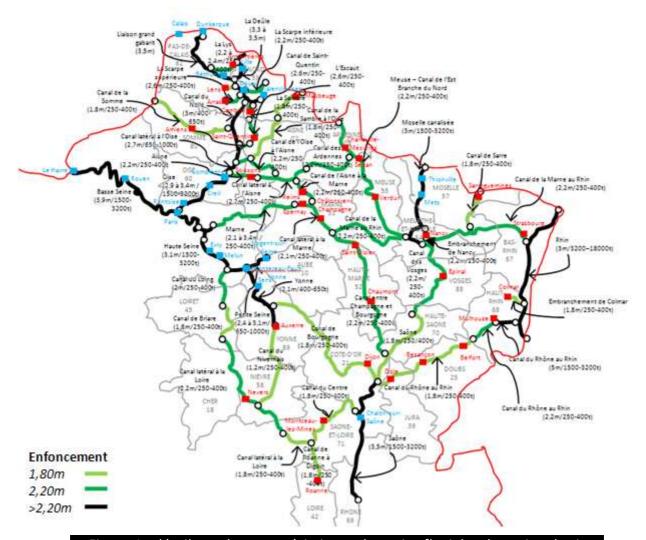


Figure 4 : détails sur les caractéristiques des voies fluviales de petit gabarit

Les horaires de navigation d'une voie fluviale sont fonction de la saison, du jour de la semaine, et du secteur. La durée des périodes d'interruption de la circulation pour travaux ou pour cause

d'inondations est variable. Par exemple sur le bassin Rhône-Saône, le trafic est interrompu, en moyenne, trois semaines par an dont une à deux semaines de "chômage", pour des travaux programmés sur le réseau (entretien ou construction des ponts, des quais et des berges). Les autres interruptions sont liées aux crues ou aux étiages trop importants. Certaines années et parfois pendant plusieurs mois, lorsque le débit de la Meuse n'est pas assez important (inférieur à 100 m³/s), certains ouvrages présentent un mouillage trop faible qui interdit le passage de certains bateaux, voire qui peut être la cause d'incidents ou d'accrochages. La navigation peut aussi être arrêtée à certaines périodes en raison du gel (e.g. quinze jours à trois semaines par an pendant les mois de janvier et février sur le canal de la Marne au Rhin).

Il y a plusieurs modes de gestion des infrastructures du domaine fluvial :

- Service public de logistique fluviale (port concédé)
- Service marchand de logistique conteneurs (e.g. Delta3)
- Service marchand de logistique fluviale (commissionnaire)
- Service privé de logistique fluviale (e.g. dédié aux céréales)
- Installations publiques de transbordement (pas de manutention ou d'entreposage)
- Installations privées de transbordement (quais et appontements dédiés à un utilisateur)
- Usines bord à voie d'eau

II.A.1.b) Les villes et agglomérations

Le réseau Freycinet dote le réseau fluvial français d'une forte capillarité qui lui permet de pénétrer profondément au sein des territoires, traversant de nombreuses villes et agglomérations. La carte qui suit identifie les villes de plus de 20 000 habitants situées sur ou à proximité du réseau Freycinet. La légende est la suivante :

- Voies:
 - o En vert clair : réseau Freycinet de tirant d'eau max 1,8m
 - o En vert foncé : réseau Freycinet de tirant d'eau max 2,1m
 - o En noir : gabarit supérieur
- Villes:
 - En rouge : villes de plus de 20 000 habitants sur le réseau Freycinet
 - En bleu : villes de plus de 20 000 habitants sur le réseau de gabarit supérieur, à proximité de voies du réseau Freycinet

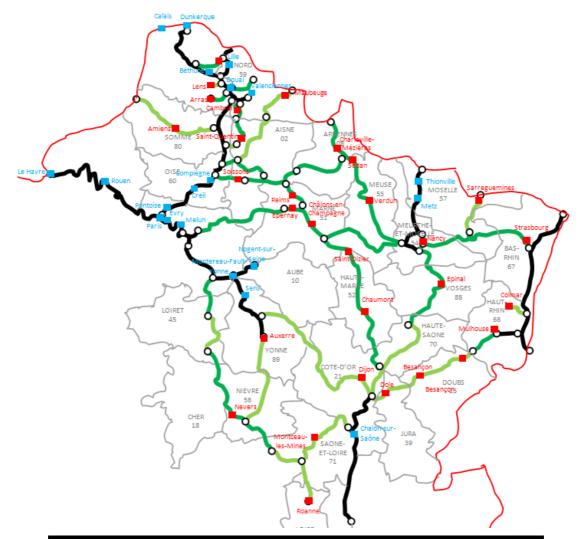


Figure 5 : villes sur le réseau Freycinet

II.A.1.c) Les ponts et écluses

L'infrastructure fluviale française comprend à aujourd'hui 1782 écluses, 494 barrages, 65 barrages réservoirs, 35 souterrains, et 74 ponts canaux. Les écluses au gabarit Freycinet ont en moyenne une dénivellation de 2,5 mètres. Le cycle dure en moyenne 10 minutes pour une écluse manuelle et 20 minutes pour une écluse automatique. En comparaison une bassinée dans une écluse à grand gabarit avec plusieurs bateaux peut parfois durer une heure.

On trouve différents types de ponts sur le réseau fluvial, mobiles ou fixes. Les ponts mobiles sont manœuvrés par un éclusier ou automatisés. La présence des ponts fixent les contraintes de tirant d'air des bateaux navigant sur le réseau fluvial.

II.A.2. ACTIVITÉ DU RÉSEAU FREYCINET

II.A.2.a) Flux de marchandises

L'activité du réseau Freycinet tend depuis plusieurs années à se réduire. En 2008 le trafic généré par le réseau Freycinet représente un peu moins de 9% du trafic national, ce qui représente par rapport à 2000 une baisse de 15% en tonnage et 42% en t-km. En comparaison le trafic fluvial a augmenté de 12% sur la même période.

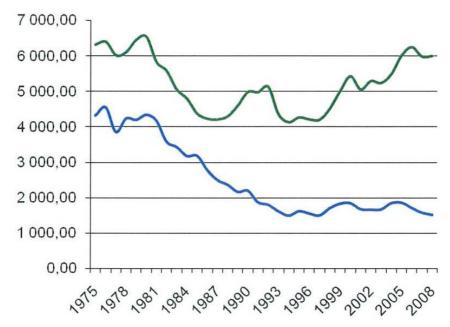


Figure 6 : évolution comparée des trafics Freycinet (en bleu) et grand gabarit (en vert) (source : VNF, 2009)

Les trafics du Freycinet sont concentrés sur deux secteurs : les céréales et les matériaux de construction.

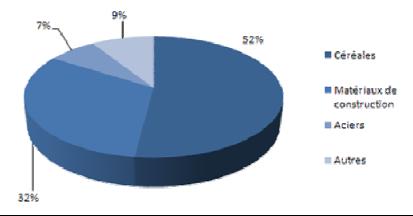


Figure 7 : marchandises transportées au gabarit Freycinet

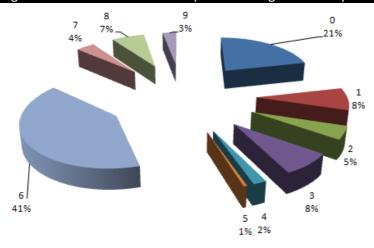


Figure 8 : tonnage de marchandises transportées au gabarit Freycinet par classes NST — origines (source : VNF, 2010)

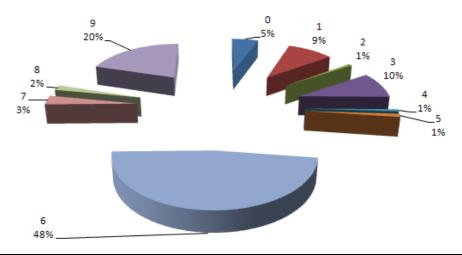


Figure 9 : tonnage de marchandises transportées au gabarit Freycinet par classes NST – destinations (source : VNF, 2010)

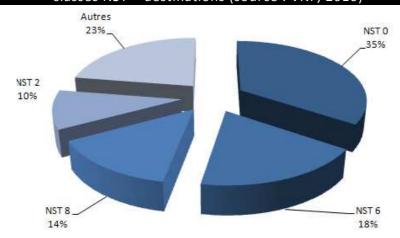


Figure 10 : T-Km transportées au gabarit Freycinet par classes NST(source : VNF, 2010)

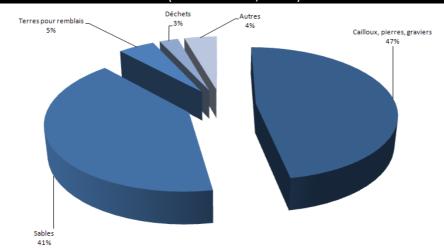


Figure 11 : décomposition de la classe NST 6 (source : VNF, 2010)

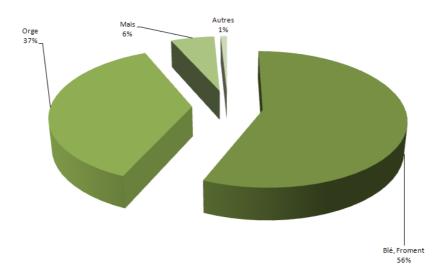


Figure 12 : décomposition de la classe NST 0 (source : VNF, 2010)

Sur les 30 bateliers rencontrés au cours de l'étude ANTEOR (cf. référence 9 en annexe 1.1), 5 transportent essentiellement des matériaux de construction et 4 des céréales. Ainsi 21 sont multi produits et transportent diverses marchandises e.g. papier, charbon, sulfate d'ammoniac, engrais, tôles, minerais, ferraille, kaolin, bobines d'acier, sel, transformateurs, produits métallurgiques. La nature des marchandises transportées peut par ailleurs être détaillée :

- Les céréales : blé, orge, maïs, avoine, millet, sorgho, soja, colza, riz, seigle, pois, lins...;
- Les matières premières : sable, cailloux, terre, ciment, agrégats, pavés, parpaings, bois brut, kaolin, charbons, engrais, soude, pates de bois, grumes ;
- Les produits finis : sucre, farine, son, sel, papiers, fers ;
- Les produits recyclés : terres de déblaiement, boues, détritus ménagers, mâchefers.

On constate une baisse assez forte des trafics de céréales au cours des dernières années (-45% en t-km de 2000 à 2008). D'une manière générale il est d'ailleurs à noter que la plupart des voies d'eau sont peu utilisées par les coopératives. Les moins exploités sont les canaux du centre e.g. Loing, Briare (8 % d'utilisation théorique) et le canal de Bourgogne (6%). Par ailleurs aucun silo n'est présent sur les canaux du Nord – Pas-de-Calais et sur le canal de la Sarre. Cependant certaines coopératives utilisent très largement la voie d'eau (9 silos sur le canal de Saint-Quentin). De plus le canal de la Sambre à L'Oise est exploité dans des proportions relativement importantes (53%). Le secteur des matériaux de construction reste stable ; il se concentre de plus en plus sur les portions les plus efficaces du réseau à petit gabarit (de la Sambre à l'Oise, l'Yonne). Le transport d'aciers et de ferrailles est en très faible proportion, allant jusqu'à disparaître aujourd'hui.

II.A.2.b) Trafics des voies fluviales

Plus précisément l'évolution des trafics dépend des voies fluviales considérées :

 Nord – Pas de Calais: les trafics sont conditionnés par un client unique sur chaque voie; la Scarpe a connu une chute de 72% du trafic de t-km de 2000 à 2008, tandis que, porté par les carrières du Boulonnais, le trafic du canal de Calais a augmenté de plus de 200%, la Scarpe et le canal de Calais fonctionnant à la manière de darses; les trafics de la Lys ont quant à eux augmenté de 33%.

- Oise Saint-Quentin : le canal de Saint-Quentin a vu ses trafics chuter de manière générale (de 10 à 80%), les céréales étant les trafics qui ont le mieux résisté, ainsi que les flux de matériaux vers la région parisienne.
- Champagne Ardennes : l'Aisne canalisée a subi une chute de 18% des trafics, tandis que la Marne affiche un bon niveau d'activité, en hausse de 11%; on notera le développement des trafics de transit sur le canal de l'Oise à l'Aisne.
- Meuse Lorraine : les trafics sont aujourd'hui proche de zéro, notamment les transits sur l'axe Est-Ouest qui restent très limités ; on notera cependant le développement du service de la SAGRAM détaillé dans la suite.
- Alsace Lorraine : un trafic subsiste à proximité de Strasbourg (canal de la Marne au Rhin), mais l'activité sur le reste du réseau tend vers zéro.
- Centre Bourgogne : l'activité reste élevée sur l'Yonne et le canal du Loing mais tend à la baisse ; elle est cependant en augmentation sur le canal de Bourgogne (céréales).

Le trafic de transit Nord-Sud (axe Rhône-Saône) a représenté environ 68 000 tonnes en 2008 (soit une baisse de 20% depuis 2000). Les flux sont par ailleurs déséquilibrés avec 42 000 tonnes dans le sens Nord-Sud. Les échanges Est-Ouest ne se font qu'entre la Moselle et le Rhin et ont représenté 112 000 tonnes en 2008 (soit une hausse d'environ 10% par rapport à 2000). Il est à noter qu'une part importante de ces flux emprunte la Moselle puis le Rhin. La majeure partie des flux Freycinet en France concernent le canal du Nord reliant la Seine et l'Oise au Nord Pas-de-Calais et au Benelux ainsi que les (dé)chargements. Après une année 2009 en net déclin à cause de la baisse de l'activité économique, l'année 2010 est marquée par la reprise des échanges fluviaux pour la majorité des flux. Les ports du canal des Vosges enregistrent une hausse de 17,5% des tonnages traités par rapport à 2009. Le trafic subit également une hausse importante sur le canal de la Marne au Rhin, les tonnages échangés ayant augmenté de 50%.

II.B. La cale

II.B.1. EXEMPLES DE BATEAUX

II.B.1.a) Caractéristiques typiques

La représentation suivante donne une idée des dimensions typiques d'un bateau au gabarit Freycinet (« péniche dite de 38,50m ») en comparaison des autres unités de la flotte fluviale.

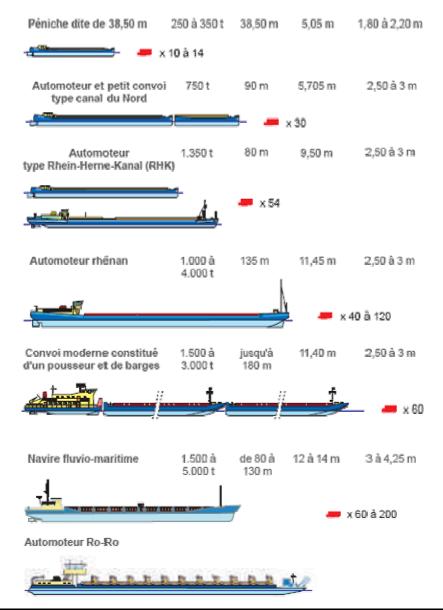


Figure 13 : dimensions typiques des unités fluviales

Les unités fluviales de petit gabarit présentent les caractéristiques suivantes :

Dimensions: 38 à 39 m de long pour 5,00 à 5,10m de large

Tonnage: 250 à 400 tonnes

Moteurs: 100 à 400 CV

• Vitesse: 6 à 20km/h en fonction de la voie d'eau (maximum 6km/h sur un petit canal)

Enfoncement: 1,80 à 2,70m

Figure 14 : exemples de bateaux au gabarit Freycinet

II.B.1.b) Architecture et fonctionnement

Typiquement, la cale est couverte par des écoutilles en aluminium ou en acier. Il y a plusieurs types d'écoutilles. Derrière la cale on trouve la cabine de pilotage et le logement et, en dessous, la salle des machines. A l'arrière et à l'avant du bateau, il y a des compartiments étanches pour la sécurité en cas de collision. En outre on trouve souvent, à l'avant, un petit logement et une deuxième salle des machines pour un groupe électrogène ou un propulseur d'étrave.

Les unités Freycinet n'ont en général qu'une seule cale, sur l'arrière se trouve un ballast permettant d'enfoncer la partie arrière et ainsi d'immerger l'hélice lorsque le bateau est lège. La structure de ces bateaux est généralement de type transversale, dont les couples sont espacés de 450 à 600 mm. Le tillac (ou plancher fer) est le plus souvent composé de tôles en acier de forte épaisseur (de 6 à 10 mm) soudées sur les varangues. La partie la plus haute de la cale est moins large, créant à l'extérieur des plats-bords, sur lesquels on peut marcher de l'arrière à l'avant du bateau.

La timonerie regroupe tous les instruments de navigation. Aujourd'hui la barre traditionnelle est remplacée par des appareils à gouverner assistés, électriques ou hydrauliques. On trouve différents équipements de bord du type compas, écran radar, carte électronique, VHF. La plupart des mariniers est par ailleurs équipée d'un téléphone GSM (souvent relié à un fax ou PC) pour les contacts avec la terre.

La timonerie doit parfois être baissée ou même démontée pour passer des ponts trop bas. Installé au milieu de la salle des machines un moteur diesel actionne l'hélice par l'intermédiaire d'un arbre de transmission. Un inverseur permet à l'hélice de tourner dans les deux sens, afin que le bateau puisse marcher en avant, en arrière, ou s'arrêter. Des moteurs auxiliaires fournissent l'électricité et l'énergie de bord lors de l'arrêt du moteur principal. On trouve dans les ports de plus en plus de bornes électriques auxquelles les bateaux peuvent se brancher. Cependant certains bateliers estiment que le courant de quai est souvent plus cher, plus compliqué (câbles longs, croisement entre plusieurs bateaux, systèmes de raccordement non standardisés, modes de tarification variables) et moins puissant que le courant fourni par un groupe électrogène.

II.B.1.c) Entretien des bateaux

Tous les trois ans en moyenne, un bateau va au chantier pour des (grands) travaux d'entretien, des réparations, des investissements ou des inspections. Tous les cinq à sept ans, l'état de la coque et

des équipements est vérifié. Si tout est conforme, le certificat de visite (communautaire ou rhénan) est prolongé et le bateau peut repartir.

En termes de maintenance, les artisans exploitant des bateaux au gabarit Freycinet se restreignent souvent à l'entretien minimum (réglementairement obligatoire) principalement pour des raisons économiques.

Les sorties du marché se font par déchirage, par exportation (vers le Danube et les pays d'Europe de l'Est e.g. Pologne, République Tchèque) ou par transformation en habitation.

II.B.1.d) Consommations énergétiques

Les émissions de polluants locaux et de gaz à effet de serre du secteur fluvial représentent une part très faible des émissions nationales ; à titre d'exemple pour l'année 2007 : 1% du CO_2 , 4% du CO et des COV, et 3% du Nox (cf. annexe 3.5). Les indicateurs ci-dessous (cf. référence 1 en annexe 1.1) fournissent des éléments quant à l'efficacité énergétique et aux émissions de CO_2 des unités à gabarit Freycinet. Ils prennent en compte les voyages en charge et à vide et agrègent les indicateurs calculés au niveau national par type d'unité fluviale à partir de leur consommation énergétique par bassin et du trafic associé. Le ratio consommation/trafic fournit l'indicateur de consommation unitaire d'énergie.

Bassin	Équipeme	ents	Consommation unitaire d'énergie (gep/t.km)	Émission unitaire de CO ₂ (gCO ₂ /t.km)	Efficacité énergétique (t.km/kep)	Consommation totale d'énergie (tep)	Émissions totales de CO ₂ (tCO ₂)
Seine	Automoteur	< 400t	14,9	47,0	67,1	9780,9	30809,9
	Pousseur	295- 590kW	8,3	26,3	119,8	3856,7	12148,5
Nord Pas de	Automoteur	< 400t	15,0	47,2	66,7	7508,2	23650,8
Calais	Pousseur	295- 590kW	8,5	26,6	118,2	71,3	224,5
Rhône	Automoteur	< 400t	16,9	53,2	59,3	2945,6	9278,5
	Pousseur	295- 590kW	9,6	30,2	104,2	1125,0	3543,7
Interbassin	Automoteur	< 400t	12,1	38,2	82,4	9699,6	30553,9
Total	Automoteur	< 400t	14,0	44,3	71	29934,3	94293,0
	Pousseur	295- 590kW	8,6	27,1	116	5052,9	15916,6

Tableau 3: indicateurs par unité de consommation énergétique et d'émission de CO_2 (Hypothèses: voyages à vide: 31%; coefficient de chargement: 80 à 100%) (source: étude sur le niveau de consommation de carburant des unités fluviales Françaises, ADEME/VNF/TLA, 2005)

Globalement, les pousseurs apparaissent comme étant plus économes que les automoteurs. Au niveau national, l'efficacité énergétique des automoteurs est comprise entre 71 t.km/kep et 105 t.km/kep. Celle des pousseurs est comprise entre 116 t.km/kep (pour des puissances comprises entre 295 et 590kW) et 147 t.km/kep (pour des puissances supérieures à 880kW).

II.B.2. FLOTTE

II.B.2.a) Flotte fluviale active en France

La flotte française d'automoteurs et de barges en activité en 2008 était constituée de 1 372 bateaux. On constate un recul de 1,5% du nombre total d'unités de la flotte par rapport à l'année 2006, et une quasi-stabilité (+0,2%) par rapport à 2007 (cf. annexe 3.1 pour plus de détails).

Le port en lourd moyen d'une unité fluviale est en 2008 de 827 tonnes. Les bateaux se répartissent par classe de tonnage (cf. annexe 3.2) de la manière suivante :

- 540 unités entre 250 et 399 tonnes (-4.5% entre 2007 et 2008)
- 530 unités de 400 à 999 tonnes (stable)
- 300 unités de plus de 1000 tonnes (+13,5% entre 2007 et 2008)

D'une manière générale, la ventilation par tranche d'âge semble indiquer un léger vieillissement de la flotte active entre 2006 et 2007, avec une stagnation en 2008 (cf. annexe 3.3).

Les moteurs ont en moyenne 34 ans (cf. annexe 3.4 pour plus de détails).

II.B.2.b) Flotte au gabarit Freycinet

Sur 10 ans le nombre des automoteurs de type Freycinet (moins de 400 tonnes y compris citernes) a quasiment été divisé par deux, soit 1038 bateaux en 1998 pour 506 bateaux en 2008. Dans le même temps, le nombre d'automoteurs de plus de 400 tonnes a progressé de 208 bateaux en 1998 à 397 bateaux en 2008.

La flotte Freycinet n'occupe plus en 2008 que 39,4% des effectifs et 17,3% du volume de cale global. Pour mémoire en 1997 ces rapports étaient respectivement de 63,1% pour le nombre de bateaux et de 36,9% pour le port en lourd.

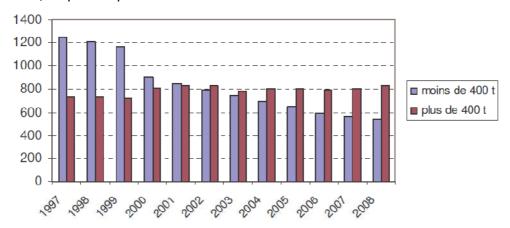


Figure 15 : évolution de la flotte (en nombre d'unités) (source : la flotte fluviale Française de marchandises active en 2008, VNF, 2009)

Ramené au tonnage de port en lourd, le constat du recul des automoteurs Freycinet et la forte augmentation en contrepartie des automoteurs de gabarit supérieur est encore plus visible. Ainsi, les automoteurs de moins de 400 tonnes ont enregistré une diminution de plus de 50% (soit 398 000 tonnes en 1998 contre 189 566 tonnes en 2008). En revanche, sur la même période, les automoteurs de gabarit supérieur sont passés d'environ 189 000 tonnes à plus de 396 000 tonnes.

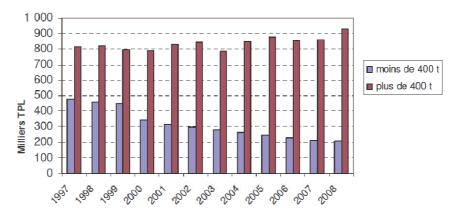


Figure 16 : évolution de la flotte (en tonnes de port en lourd) (source : la flotte fluviale Française de marchandises active en 2008, VNF, 2009)

Les barges de type Freycinet ne représentent plus qu'une part résiduelle de la flotte (38 bateaux aujourd'hui contre 170 en 1998). Sur la même période, les barges de plus de 400 tonnes ont enregistré une baisse beaucoup moins sensible (-19%), soit 430 unités en 2008 contre 526 en 1998. A noter que le recul s'est principalement amorcé à partir de 2003, le nombre d'unités demeurant relativement stable sur la période antérieure.

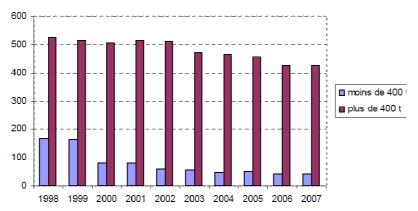


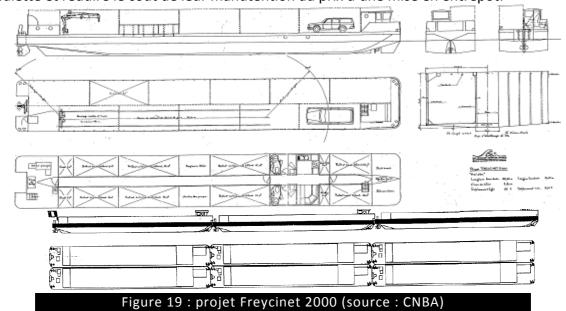
Figure 17 : évolution du nombre de barges en France entre 1998 et 2007 (source : la flotte fluviale en 2007, VNF, 2008)

A titre comparatif, la flotte européenne (hors France) représente à ce jour (année 2006 pour l'ensemble Benelux-Allemagne-Suisse) 8631 bateaux porteurs pour un total de près de 10,3 millions de tonnes. Le nombre d'unités de la flotte Freycinet représente moins de 17% (1054 automoteurs et 345 barges) et un peu plus de 3% en termes de capacité.



Figure 18 : structure de la flotte Européenne en port en lourd et en nombre d'unités (source : la flotte fluviale en 2007, VNF, 2008)

II.B.3. CONCEPTS DE BATEAUX INNOVANTS


II.B.3.a) Freycinet 2000

Le projet visait l'étude de barges ponton destinées au chargement de conteneurs, de palettes, de voitures ou tout autre produit non vrac en unité de transport. Le concept Freycinet 2000 repose sur une barge automotrice permettant la constitution de convois (3, 4 ou 6 bateaux). La barge a les principales caractéristiques dimensionnelles suivantes :

Longueur hors tout	38,70m
Largueur hors tout	5,05m
Creux au milieu	2,20m
Déplacement lège	58t
Déplacement en ordre de marche	68,9t
Déplacement au tirant d'eau 1,80m	292,8t
Port en lourd correspondant	223,9t
Déplacement au tirant d'eau 2,05m	340t
Port en lourd correspondant	271,1t
Hauteur sous barrots minimale	1,80m

Tableau 4 : caractéristiques du bateau Freycinet 2000 (source : CNBA, 2003)

La coque abrite 8 ballasts d'équilibrage d'une capacité totale de 160 m³ ils permettent de contrôler l'enfoncement (i.e. le tirant d'eau et le tirant d'air), l'assiette et la gîte du bateau ; le remplissage et la vidange des ballasts sont assurés par un système de pompes et d'électrovannes commandées depuis un pupitre en timonerie (affichage d'un tableau synoptique). Deux cloisons longitudinales allant du peak au compartiment moteur limitent les ballasts d'équilibrage disposés latéralement de part et d'autre d'un tunnel de circulation entre l'avant et l'arrière du bateau. Un quartier d'équipage est installé dans la coque, au tiers avant ; il comporte deux cabines, chacune avec deux lits superposés, un bloc sanitaire et un carré cuisine. La propulsion principale est assurée par un propulseur hydraulique, orientable et télescopique. La puissance maximale disponible à l'hélice est de 240 kW. La conduite à l'avant permet de charger 11 conteneurs ou caisses mobiles. Un autre intérêt du concept est de permettre d'ajuster le ponton à la hauteur du quai et de faciliter les opérations de manutention qui peuvent être réalisées à l'aide d'un simple transpalette et réduire le coût de leur manutention au prix d'une mise en entrepôt.

Les coûts de construction se sont cependant avérés élevés, et le coût d'exploitation ne semble pas permettre l'économie de personnel dans le cas de navigation en convois groupé sur le grand gabarit. Le concept n'a ainsi pas été développé plus avant.

II.B.3.b) Autres initiatives

La CNBA a travaillé en 2007 sur un projet de développement d'une unité fluviale présentant un tirant d'eau de 2,3m, un tirant d'air de 3,5m et différents équipements : propulseur d'étrave, timonerie télescopique, panneaux de cale coulissant sur rail, ancre sur câble (moins lourde qu'une ancre classique), grue embarquée. Son coût de construction a été estimé à 500 k€.

La SCAT a développé différents bateaux spécifiques au gabarit Freycinet : des bateaux pour le canal des Vosges, un convoi poussé sur la Marne, ou un bateau adapté au transport de conteneurs de Champagne sur la Marne.

Les Chantiers de la Haute Seine ont construit en 2005-2006 les trois automoteurs de la SCAT naviguant sur le canal des Vosges. Au gabarit Freycinet, le Quartz, le Feldspath, et le Mica sont destinés au transport de matériaux de construction. Ces automoteurs de 38m de long pour 5m de large présentent un déplacement en charge de 428 tonnes et un enfoncement maximal de 2,40m. Ils sont dotés d'un moteur Volvo de 120 cv, adapté pour la vitesse de navigation (limitée à 6 km/h) et qui permet de diminuer les coûts d'exploitation. Ils présentent un logement réduit (12 m²) et la timonerie est située à l'avant. Des caméras embarquées permettent par ailleurs de disposer d'une assistance à la navigation e.g. passage d'écluses.

Concernant le transport de conteneurs, le cabinet d'architecture navale HT2 a travaillé sur le dimensionnement d'une barge Freycinet destinée au transport de déchets par conteneurs, sur la Communauté Urbaine de Strasbourg. Cela reste complexe, notamment pour la stabilité et le chargement du bateau. La capacité d'emport est de 20 conteneurs (2 x 10). Ce bateau limite à 7,5cm les plats-bords latéraux et propose un passage au centre du bateau (sur les conteneurs et système d'encoches gravées dans les murs de la coque, qui permettent de descendre dans la cale). Pour certains, cela ne parait pas très réaliste, pour plusieurs raisons :

- Réglementaire : l'absence de plats-bords ne serait pas réglementairement possible ; une demande de dérogation a été déposée auprès de la CCNR, mais qui n'a pas encore abouti.
- Sécuritaire : le passage des mariniers sur les conteneurs pour aller de l'arrière à l'avant du bateau soulève des questions de sécurité. Par ailleurs, le cas d'un trafic non chargé à plein (absence d'un conteneur) pose la question du passage du marinier.
- Ballastage : dans le cas où les plats-bords sont réduits se pose la question du ballastage (les compartiments sous plats-bords étant utilisés comme ballasts).
- Technique: pour un gabarit de 5,05m de large, il ne reste que quelques centimètres sur les côtés du bateau si on transporte deux conteneurs côte-à-côte. La question des matériaux disponibles aujourd'hui pour réaliser ce genre de bateau est aussi posée.

De leur côté les nouveaux bateaux construits par le groupe Mercurius ne sont pas compétitifs en termes de prix seul par rapport à la flotte ancienne déjà rentabilisée. Afin de se différentier sur le marché Mercurius développe des bateaux répondant à des critères environnementaux stricts. Ils sont équipés de systèmes de réduction des NOx basés sur la technologie SCR (Selective Catalyst Reduction).

On trouvera à titre d'information en annexe 5 des exemples de bateaux innovants destinés à des gabarits plus grands que le Freycinet.

II.C. La logistique

II.C.1. ORGANISATION DES TRANSPORTS

II.C.1.a) Différentes formes d'organisation

La logistique fluviale a trois catégories d'origines / destinations :

- L'embranchement fluvial d'un chargeur (e.g. silo d'un céréalier en bord à voie d'eau, carrière pour granulats...)
- Un port (maritime ou fluvial)
- Autres : c'est notamment le cas de la livraison urbaine

Les organisations de transport combiné avec un maillon fluvial peuvent prendre trois formes :

- Le transport combiné fleuve-route: des conteneurs maritimes sont acheminés par voie fluviale entre un port maritime et un port fluvial. Le pré ou post-acheminement est effectué par route ou, plus rarement, par rail. Moins fréquemment, les marchandises sont chargées au départ d'une usine ou d'un entrepôt dans des Unités de Transport Intermodales (UTI), conteneurs ou caisses mobiles, puis acheminées par route (ou par rail) vers un terminal fleuve-route. Ces UTI sont alors transférées et acheminées par barge jusqu'au terminal de destination. Après avoir été transférées à nouveau sur un ensemble routier, elles sont livrées chez le destinataire.
- Le « fluvial maritime » : des conteneurs pleins sont acheminés par voie fluviale vers un port maritime pour ensuite embarquer à bord d'un navire de mer ; des conteneurs vides peuvent aussi être transportés vers un autre port fluvial ou maritime. Ces trafics étaient jusqu'à récemment sous le contrôle des opérateurs maritimes. Des commissionnaires de transport installés sur des plates-formes portuaires ou à proximité d'un port fluvial (e.g. à Gennevilliers) ont commencé à assurer leurs propres services. Les positionnements, retours et restitutions de vides sont contrôlés par les armements maritimes dans le cadre de la gestion de leur flotte (en propre, affrétés).
- Les trafics inter-ports fluviaux et maritimes: des conteneurs sont échangés entre deux ports fluviaux. Il s'agit notamment de transport de déchets (e.g. dans le Nord Pas-de-Calais ou sur le bassin Seine aval entre le Havre et Rouen) ou de produits des filières de « valorisation-recyclage ». Différentes expérimentations d'acheminement de produits (e.g. grande distribution) ont été effectuées sur le Rhône. Un service de navette « fluvio-fluviale » destinée à des pré et post-acheminements a par ailleurs été mis en place entre Rouen et Le Havre en juillet 2005.

D'une manière générale les transports terminaux aux deux extrémités d'un service porte à porte seront réalisés par voie routière.

II.C.1.b) Flux de navigation

Les unités fluviales sont exploitées sur deux types de relations :

 Courtes distances (91 km en 2003): elles effectuent un grand nombre de voyages (92 en moyenne en 2003), avec un retour à vide quasi-systématique; cette catégorie représente environ 12% de l'offre, soit une soixantaine d'unités; elles sont en très grande majorité utilisées pour l'acheminement de matériaux de construction sur la Seine.

Longues distances (501 km en 2003): elles effectuent peu de voyages (22 en moyenne en 2003); cette catégorie représente les trois-quarts de l'activité Freycinet (soit environ 400 unités) et touche principalement le secteur des céréales (52% en t-km), des matériaux de construction (32%) et des aciers (7%).

A ces deux catégories, il convient d'ajouter un flux d'activité partielle qui comprend les unités n'ayant été exploitées qu'une partie de l'année (14% des flux).

Dans le cadre de l'étude ANTEOR (cf. référence 9 en annexe 1.1), 51% de l'activité des bateliers interrogés a lieu sur les voies d'eau à grand gabarit. 83% naviguent dans plusieurs bassins, les plus fréquentés étant la Seine et le Nord. Et si 20% d'entre eux naviguent exclusivement en France, la grande majorité évolue à la fois en France et à l'étranger, la Belgique et les Pays-Bas étant les pays les plus fréquentés (sur les 80%, 10% déclarent naviguer aussi en Allemagne). Finalement leur territoire d'activité est très stable : un seul a changé de bassin de navigation entre 2001 et 2003.

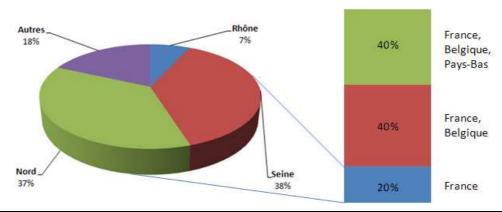


Figure 20 : territoires fréquentés par les bateliers (source : ANTEOR, 2005)

II.C.1.c) Modes de navigation

D'après l'étude ANTEOR (cf. annexes), un batelier passe en moyenne chaque année 31 jours en attente de trouver un fret, 27 jours en attente de (dé)chargement, et 41 jours en attente de charger un fret. Cela représente environ 3 mois ½ pendant lesquels le batelier n'est pas productif. Un bateau Freycinet à une capacité de transport de 378 tonnes en moyenne alors que la moyenne de ses chargements est de 275 tonnes (souvent les lots sont de 250 tonnes). Pour ANTEOR, il existe ici un gain de productivité potentiel de 37% (une cible de 10% semblant réaliste).

Selon les dimensions du bateau, le nombre et les fonctions des membres de l'équipage, il y a trois modes de navigation :

Diurne: 14 heures au plus, entre 6h00 et 22h00

Semi-diurne: 18 heures au plus, entre 5h00 et 23h00

Continue: 24 heures

Sur certaines voies fluviales, des dérogations (ou arrêtés) permettent la navigation avec une seule personne à bord. Ces dérogations reposent sur la capacité physique du marinier (certificat médical), et nécessitent d'équiper le bateau avec un propulseur d'étrave.

Il y a des limitations de vitesse sur les voies navigables. Sur les canaux à petit gabarit, la vitesse maximale autorisée pour les bateaux chargés est de 6 km/h. Cependant la moyenne peut tomber à 2 km/h sur de nombreux parcours. Par exemple dans les canaux étroits et peu profonds, on

marche souvent à 4 ou 5 km/h. Ainsi avec les passages d'écluse, un bateau parcourt environ 30 km par jour. Sur les voies à grand gabarit, un Freycinet peut marcher à 13 km/h. Par ailleurs un bateau à vide pourra aller quelques km/h plus vite que lorsqu'il est chargé.

II.C.1.d) Manutention

En fonction de sa nature, un mode de conditionnement particulier induit des contraintes spécifiques (e.g. de manutention). Les différents modes de conditionnement existants n'ont dès lors pas la même capacité d'intégration au sein des logistiques fluviales :

- Le conteneur induit des coûts d'exploitation assez élevés, difficilement viables sauf pour des marchés de niche (e.g. champagne). Il peut présenter un intérêt dans le cadre d'une desserte ville à ville pour de la livraison urbaine. Les contraintes liées au transport fluvial de conteneurs sont liées au tirant d'air (e.g. ponts à Paris) et à la largeur des unités Freycinet, qui ne permettent pas de charger 2 conteneurs côte à côte.
- Les accidents étant très rares, le transport fluvial est bien adapté aux convois exceptionnels (colis lourds) et aux matières dangereuses.
- Le mode fluvial est adapté au vrac, notamment en raison du manque de cubage.

En fonction du mode de conditionnement, des installations de quai, et de la nature des marchandises, différents processus et équipements sont utilisés pour la manutention :

- Les équipements mobiles :
 - o Pour la manutention du vrac, la pelle mécanique ou hydraulique sur pneus en combinaison depuis le quai avec un chouleur en cale du bateau ;
 - o Le reach stacker permet la manutention des conteneurs, des balles ou des sacs ;
 - o Un système de déversement gravitaire du vrac, depuis une estacade ;
 - Le roulage par l'intermédiaire d'une rampe autorise l'apport direct sur la barge de remorques, conteneurs sur Mafi, ainsi que de palettes et d'autres charges avec un chariot élévateur; cette technique est particulièrement utilisée pour les colis lourds;

Les installations fixes :

- Un convoyeur / bande transporteuse ou une conduite permet l'acheminement du vrac ou des déchets semi-liquides;
- Les grues fixes munies de grappins, crochets, godets...;
- Les portiques de quai avec un spreader pour les conteneurs et caisses mobiles.

Ainsi les céréales sont chargées à un silo, au moyen d'un tuyau. Pendant le chargement, le travail du marinier consiste à donner des indications, à surveiller les opérations et parfois à déplacer le bateau sur quelques mètres. Dans la pratique, il peut lui-même commander le tuyau de chargement aux silos. Le chargement est une opération délicate: il faut distribuer la marchandise pour éviter les surcharges et garantir la stabilité du bateau. Pour constater le poids chargé, soit la marchandise est pesée avec une bascule avant le chargement, soit son poids est calculé après chargement. Dans ce cadre la bordaille de chaque bateau est équipée d'échelles de jauge ; chaque bateau a par ailleurs un certificat de jaugeage officiel qui mentionne le tonnage correspondant à chaque centimètre d'enfoncement.

De même les colis lourds nécessitent des moyens spécifiques. Par exemple, l'usine Areva de Saint-Marcel est dotée d'un portique d'une force de levage de 1 050 t, qu'elle met à la disposition d'autres chargeurs expédiant des colis lourds.

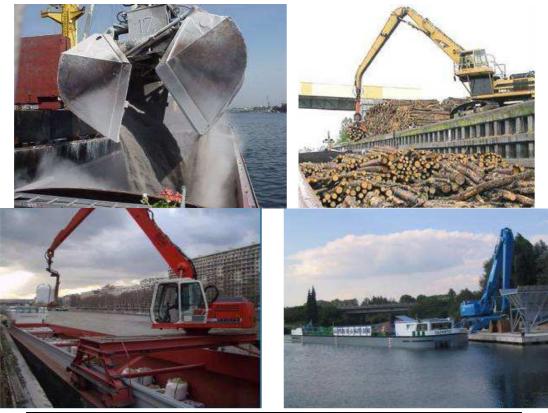


Figure 21 : exemples de techniques de manutention fluviale

Les moyens de manutention peuvent aussi être embarqués à bord d'unités spécifiques e.g. bigues, grues flottantes. Certains bateaux embarquent leurs propres outils de manutention.

II.C.1.e) Gestion administrative et commerciale

Lorsqu'un bateau est affrété, une convention d'affrètement (lettre de voiture) est établie correspondant au contrat entre le batelier et l'affréteur, précisant notamment les dates et lieux de chargement et de déchargement, la marchandise et le tonnage à charger, le prix de fret et le taux de commission. Une fois le chargement terminé et le bateau jaugé, un connaissement est établi précisant le tonnage exact chargé, jouant le rôle d'accusé de réception de la cargaison.

Jusqu'en 2000, les transports fluviaux intérieurs et nord-sud étaient gérés par un bureau d'affrètement (qui fixait également les prix du fret) sur la base d'un principe de « tour de rôle » : le marinier ayant déchargé il y a le plus longtemps avait le droit au premier choix des transports offerts. Il y avait en général trois séances par semaine. Depuis l'abolition du tour de rôle, le marinier doit téléphoner à un affréteur pour identifier les transports disponibles. Ensuite il doit négocier le prix du fret et les conditions préalables du voyage qui l'intéresse. On peut aussi conclure un contrat à temps. Comme les affréteurs et les transporteurs ont dans la pratique souvent des intérêts opposés, beaucoup de bateliers se sont réunis en associations ou en groupements qui négocient collectivement avec les courtiers de fret ou directement avec les chargeurs (donneurs d'ordre). La plupart de ces coopératives ont d'ailleurs un tour de rôle interne.

Il existe différents types de contrats :

- Le contrat à temps : le bateau est à la disposition d'un chargeur pour une durée déterminée ; le paiement est à la journée.
- Le contrat au tonnage : le bateau est engagé pour une durée fixe, un tonnage déterminé, et sur la base d'un prix de fret à la tonne défini.
- Le contrat de voyage simple : le bateau est engagé pour un seul voyage déterminé.

II.C.1.f) Concurrence petits et grands gabarits fluviaux, modes ferroviaire et routier

Le nombre de voyages que peut effectuer une unité fluviale par an dépend d'un certain nombre de paramètres : vitesse de circulation, temps de manutention, distance (à vide / en charge). Les contraintes du réseau impactent dès lors directement la capacité de production. Cela induit une concurrence du grand gabarit par rapport au petit gabarit, les opérateurs cherchant à maximiser leur marge opérationnelle. Cette productivité plus faible et le risque plus grand lié au manque de sécurité en termes d'activité se reporte directement sur le prix de vente de la prestation, ce qui diminue la compétitivité par rapport au mode routier. Ainsi on observe un différentiel de 10 à 60% en fonction de la demande entre le transport de céréales (spots) et de matériaux de construction (flux organisés voire dédiés). L'offre s'organise aujourd'hui essentiellement sur la base de trafics « spots » ; c'est notamment le cas des trafics de céréales, présentant une forte saisonnalité et variabilité. L'alternative est l'offre dédiée ; le trafic de matériaux réalisé pour la SAGRAM sur le canal des Vosges en est un exemple parlant : des bateaux neufs permettant d'optimiser le gabarit sont employés; les personnels naviguant ne vivent pas à bord; l'activité consiste en un brouettage sur quelques kilomètres. Les transports de matériaux entre le canal de la Sambre, l'Oise et la région parisienne s'effectuent sur des bateaux traditionnels naviguant de manière régulière pour les donneurs d'ordre. Ainsi le réseau Freycinet présente par rapport au grand gabarit des spécificités ayant un impact sur la productivité de la flotte en termes de charge utile et de vitesse de circulation (liée à la densité des écluses, à la durée journalière d'ouverture des ouvrages). Les unités fluviales sont notamment soumises à des contraintes qui limitent leurs performances hydrodynamiques:

- Environnementales i.e. gabarits des voies navigables, des ponts et des écluses, limitations de vitesse, et effets de berges, du courant, et de fond;
- Dimensionnelles i.e. des unités fluviales liées aux précédentes i.e. longueur, largeur, tirant d'eau, tirant d'air et enfoncement.

La taille des bateaux autorisés à circuler sur le réseau est ainsi conditionnée par les dimensions des écluses, l'enfoncement possible dans la voie d'eau, la hauteur libre sous les ponts (*tirant d'air autorisé*)...

II.C.2. SERVICES EXISTANTS

II.C.2.a) Transport de déchets

En juin 2010, SITA Agora a inauguré sa première liaison régulière fluviale entre Noyelles-Godault et l'entreprise Spano, fabricant de panneaux de particules de bois destinés à la construction. Chaque année, elle consomme 400 000 tonnes de bois recyclé, dont 5% fournies par SITA Agora. Il est prévu de transporter 800 tonnes toutes les trois semaines par la voie d'eau. La plateforme de

valorisation des déchets est implantée à proximité des réseaux autoroutier (A1 et A21), ferroviaire (gare de Dourges) et fluvial (canal de la Deûle). Il y a un an, des essais ont été menés avec des cargaisons de balles de papier issues du centre de tri Norvalo. Aujourd'hui c'est avec des broyats de bois produits par le centre que la ligne fluviale est ouverte. Le centre de tri n'étant pas embranché sur la Deûle, il faut acheminer les particules sur place, puis charger la péniche avec une pelleteuse. Au retour, les péniches sont prévues de charger du sable à Bruges pour une entreprise de Harnes. Bien que le transport coûte actuellement 20% de plus que par la route, des économies d'échelle sont attendues pour 2011 avec l'ouverture du nouveau centre de traitement du bois.

En octobre 2010, SITA a présenté son concept de déchetterie fluviale temporaire pour les particuliers, une variante de la déchetterie mobile créée en 2008. Installée sur un quai de Boulogne-Billancourt, « ma déchetterie fluviale » est destinée à être ouverte pendant un ou deux jours, après quoi les déchets sont emmenés par voie fluviale vers un centre de tri.

II.C.2.b) Transport de matériaux sur le canal des Vosges

L'autorisation pour exploiter les alluvionnaires sur la commune de Thaon a été obtenue en 2004 - 2005, pour une durée initiale de 20 ans. Les granulats extraits doivent ensuite être acheminés vers la plate-forme de broyage qui est située à une distance fluviale de 6km (4 écluses), sur le canal des Vosges (gabarit Freycinet). Une centrale à enrobé est implantée sur le site et s'approvisionne directement avec les matériaux transformés.

Le transporteur retenu pour effectuer ce transport fluvial (la SCAT) facture le transport autour de 1 euro la tonne transportée, et les mariniers salariés de la SCAT sont rémunérés à la tonne transportée. La SCAT a fait fabriquer trois bateaux Freycinet, dans les chantiers de Haute-Seine, pour répondre spécifiquement à la demande de la SAGRAM. Les trois bateaux de la SCAT (le Quartz, le Feldspath et le Mica) ont des timoneries placées à l'avant et disposant d'un système de ballastage permettant de passer les ponts et les écluses. Ils sont équipés d'un logement de 12m² avec coin cuisine, WC et banquette-lit.

Ils disposent d'un propulseur d'étrave à l'avant et à l'arrière et de moteurs Volvo Penta. Leur puissance est de 280 cv, et ils consomment peu (entre 18 et 20 l/h). Le tirant d'eau est de 2,05m, mais ils ont pu obtenir une dérogation à 2,10m. Les bateaux ont la capacité de transporter 300t, mais dans les faits, les chargements sont de 265t du fait du profil du canal. Néanmoins, une amélioration sur la quantité transportée est à noter, depuis le curage de 2009 qui a duré 3 à 4 mois.

Les flux de granulats sont d'environ 300 000 t/an. 2 à 2,5 rotations sont effectuées tous les jours de la semaine, et parfois le samedi. Les horaires de travail sont conditionnés par les habitations riveraines et le problème du bruit lors de la chute des granulats dans la cale lors du chargement. Le premier chargement a en général lieu à 7h, et le dernier vers 17-18h. Les opérations de chargement et de déchargement durent environ 30 minutes. Le temps de navigation est de 2h30 en charge, et de 1h30 lège. Les écluses sont automatisées et actionnées par le marinier. Au niveau du site d'extraction, le bateau est chargé par le capitaine qui démarre le chargement à partir d'une télécommande. Le chargement s'effectue automatiquement à l'aide d'un bras rotatif. Les bateaux utilisés par la SAGRAM disposent notamment d'une connexion Wifi pour échanger des données avec les systèmes de gestion des carrières. Il y a donc une gestion de la quantité de granulats extraits, en fonction de l'arrivée des bateaux. Il n'y a pas d'intervention humaine entre la drague et le stockpile.

II.C.2.c) Autres services

CFT dispose de quelques bateaux à gabarit Freycinet exploités sur des marchés de niche, notamment le « Porthos » (remis en état en 2008) pour les colis lourds (e.g. rotors, transformateurs), et des unités citernes pour des produits chimiques (e.g. paraffine, orthoxylène, diester).

Des bateaux de la SCAT sont actuellement exploités pour différents transports de marchandises sur le réseau Freycinet e.g. mâchefers et matériels lourds sur la Marne, vrac de déchets du BTP (plâtre, briques...) sur la Seine, céréales.

Filiale d'IFB/Inter Ferry Boats, Haeger & Schmidt Container Line peut faire appel aux bateliers de la coopérative NAVISCO 2000 pour effectuer des transports particuliers sur le réseau à petits gabarits. En 2008, 4 colis encombrants ont ainsi été transportés sur le réseau Freycinet.

MARFRET est en train de réfléchir à la mise en place d'un bateau pour effectuer des livraisons dans Paris. MARFRET a par ailleurs mis en place sur la Marne des unités spécifiques dimensionnées par rapport aux infrastructures. Ils ont embauché de nombreux bateliers pour assurer le service, mais la rentabilité du service est aujourd'hui difficile à obtenir car la masse salariale n'a pas forcément été bien dimensionnée et semble trop importante.

Il y a actuellement un service de transport de matériaux entre Vitry-le-François et Reims. D'ailleurs la Plateforme du Bâtiment (Saint-Gobain) souhaite depuis 4 ans, équiper un petit bateau (gabarit Freycinet) avec une grue afin de réaliser les approvisionnements de ses sites à Paris-Austerlitz, et Saint-Denis, sur le canal de Saint-Denis.

PSA a mis en place un modèle de navigation sur zone courte. Il s'agit d'un transport de déchets de fer dans un sens, et de disques de frein dans l'autre entre Mulhouse et Sept-Fons. Le trajet fluvial est de 130km, et il y a 7 écluses. Ce trajet est effectué en 10 jours, temps nécessaire pour la maturation des disques de frein (i.e. période pendant laquelle les freins ne peuvent pas être utilisés). Dans ce cas, deux personnes sont à bord car il y a trop d'écluses sur le trajet.

Un projet dans lequel VNF était impliqué a été mis en place il y a quelques années pour la livraison de boissons dans Paris par voie fluviale. Dans les années 80, un test a été effectué pour Saupiquet pour la livraison en ville des palettes avec une flotte de 9 Freycinet, entre Péronne et Palavas-les-Flots. Sur ces 9 bateaux, un seul était équipé d'une grue, ce qui permettait de réduire les coûts, mais celui-ci pouvait charger et décharger les autres bateaux.

II.C.3. LE TRAITEMENT DE L'INFORMATION

II.C.3.a) Échanges de données

Le service radiotéléphonique sur les voies navigables intérieures permet l'établissement de communications radio à des fins spécifiques grâce à l'utilisation de canaux convenus d'avance et d'une procédure opérationnelle reconnue (catégories de service). Ce service comprend cinq catégories: de bateau à bateau, d'informations nautiques, de bateau à autorités portuaires, de communications à bord, et de correspondance publique (service sur une base non obligatoire).

Le standard pour les annonces électroniques en navigation intérieure a été adopté par la Commission Centrale pour la Navigation du Rhin en 2003. Les annonces communiquées par les bateaux sont indispensables aux SIF (Services d'Information Fluviale) pour la gestion du trafic et la

prévention des accidents. Les annonces électroniques facilitent l'échange de données entre les bateaux et les centrales de secteurs par rapport aux annonces communiquées sur papier ou verbalement.

L'information relative au chenal navigable (avis à la batellerie) peut être obtenue de plusieurs façons :

- Communiquée oralement par le service radiotéléphonique d'informations nautiques ;
- Disponible sur Internet ou envoyée par courrier électronique sur des ordinateurs embarqués ou de bureaux;
- Envoyée par SMS ou consultable sur des pages WAP sur les téléphones mobiles.

En intégrant les images du radar à la carte électronique de navigation, le marinier peut percevoir les autres bateaux et obstacles dans le chenal sur un seul écran, mais ce système de « radar overlay » coûte encore très cher. Des données actualisées et variables (e.g. arrêts et restrictions de navigation, tirants d'air) peuvent aussi être téléchargées sur Internet et intégrées à la carte électronique.

Beaucoup de bateliers transmettent les données concernant leur bateau, itinéraire et cargaison aux autorités par messagerie électronique, au lieu d'utiliser la VHF ou de montrer leurs documents de transport à l'éclusier. Les autorités utilisent ces données pour la gestion du trafic, pour l'amélioration de la sécurité et pour établir des statistiques. Comme la plupart des écluses et des postes de contrôle sont interconnectés, les mariniers n'ont (en théorie...) besoin de communiquer leurs renseignements qu'une seule fois.

Il est prévu dans les années à venir d'équiper tous les bateaux d'un transpondeur AIS. Les données émises pourront être affichées sur l'écran des éclusiers et des contrôleurs de trafic, ainsi que sur la carte électronique ou l'écran radar d'autres bateaux équipés de l'AIS. Malheureusement, ces données peuvent être facilement rendues publiques sur Internet, affectant alors la vie privée, la sécurité et la situation économique des bateliers. Il y a également des systèmes privés de géolocalisation et de suivi de bateaux par internet (e.g. www.elv-transport.com).

L'email et Internet sont utilisés par les bateliers pour recevoir rapidement tous types de renseignements utiles à la navigation et à la gestion de leur entreprise (avis à la batellerie, cotes d'eau, débits), ou encore des nouvelles et informations publiées par les revues et organisations professionnelles. Bien que l'affrètement effectif se fasse toujours par téléphone, Internet est de plus en plus utilisé pour obtenir des informations sur les transports offerts ou les prix pratiqués. Il y a ainsi plusieurs systèmes d'internet mobile comme le GPRS et la 3G. Malheureusement l'internet mobile coûte toujours assez cher, surtout en cas de roaming (i.e. déplacement géographique induisant un changement de l'opérateur de la cellule GSM active). De plus, les connexions à haut débit sont souvent seulement disponibles en zones urbaines où les réseaux peuvent être saturés. Le WiFi (qui nécessite une antenne externe) peut aussi être utilisé, certaines entreprises et gestionnaires portuaires mettant leur réseau gratuitement à la disposition de la batellerie. Cependant sa portée reste assez limitée; ainsi le Wimax pourrait être utile.

II.C.3.b) Services d'information fluviale

Les Services d'Information Fluviale (SIF) sont un concept de services d'information harmonisés qui facilitent la gestion de la navigation fluviale, comprenant, lorsque c'est possible sur le plan technique, des interfaces avec d'autres modes de transport. Les SIF contribuent à rendre les

opérations de transport sûres et efficaces et à tirer le meilleur parti des voies navigables intérieures. Il existe déjà de nombreux SIF en exploitation.

Les SIF recueillent, traitent, étudient et diffusent les informations sur les chenaux, la circulation et le transport. Les SIF ne concernent pas les activités commerciales internes entre les sociétés concernées, mais leur architecture ouverte autorise des interfaces avec ces activités.

La zone couverte par les SIF peut couvrir les territoires d'un ou plusieurs pays. Trois types de services peuvent être utilisés :

- Un service d'information assure la mise à disposition en temps utile des informations importantes requises pour les décisions de navigation prises à bord.
- Un service d'aide à la navigation facilite les décisions nautiques à bord et en surveille les conséquences. L'aide à la navigation est particulièrement importante par temps bouché, lorsque les conditions météorologiques sont défavorables ou en cas d'anomalie ou de défaillance de dispositifs tels que le radar, le gouvernail ou le système de propulsion. L'aide à la navigation est fournie sous la forme appropriée d'une information relative à la position, sur demande du batelier ou, dans certains cas particuliers, lorsque le fournisseur du service d'aide à la navigation fluviale le juge utile, en recourant à des technologies comme le GNSS/Galileo.
- Un service d'organisation du trafic permet de prévenir les situations de trafic dangereuses par la gestion des mouvements des bateaux et d'assurer une navigation sûre et efficace dans la zone concernée.

Les SIF interviennent à différents niveaux d'information :

- Opérationnel : les informations sur les chenaux comprennent les données géographiques, hydrologiques et administratives sur le cours d'eau (chenal) dans la zone SIF;
- Tactique : les informations sur le trafic relèvent des décisions urgentes en matière de navigation ;
- Stratégique: les informations sur le trafic concerne les décisions à moyen et à long terme des usagers des SIF. Elles peuvent être utiles pour la fourniture de plusieurs services e.g. la planification des voyages, l'assistance à la prévention des accidents (données sur le bateau et sur la cargaison), la gestion des ponts et écluses et des terminaux avec le calcul des heures d'arrivée prévues (ETA) et des heures requises d'arrivée (RTA).

II.C.3.c) Système d'Identification Automatique

L'AIS (Automatique Identification System) est un système embarqué de transmission de données radios, permettant l'échange d'informations statiques et dynamiques entre les bateaux équipés et entre les bateaux et les stations à terre. Les systèmes AIS sont destinés à améliorer la sécurité de la navigation, qu'ils soient utilisés pour les interactions de bateau à bateau ou dans le cadre d'une surveillance (VTS), du suivi et du repérage des bateaux et de la prévention des accidents.

En général, une station AIS pour le domaine fluvial comprend un émetteur-récepteur VHF (1 émetteur, 2 récepteurs), un récepteur de position GNSS et un module de traitement de données.

Il est à noter qu'à l'heure actuelle le déploiement du réseau AIS n'est pas prévu sur le réseau Freycinet.

II.D. Économie et finance

En France le chiffre d'affaires de la filière était de 243 Meuros en 2003 (cf. référence <9> en annexe 1.1). Malgré un doublement de l'activité, il n'a progressé que de 12% entre 1979 et 2003 : la recette moyenne a diminué plus vite que le coût moyen, ce qui aboutit à une baisse de la rémunération (de 2 équivalents SMIC en 1979 à 1,1 équivalent SMIC en 2003). C'est un transport en théorie économiquement rentable. On estime que le chiffre d'affaires d'un marinier peut atteindre 120 000 euros/an, une unité Freycinet d'occasion valant entre 120 et 150 000 euros.

L'ITB a réalisé une étude donnant la répartition des postes de coûts de différents bateaux à petits gabarits :

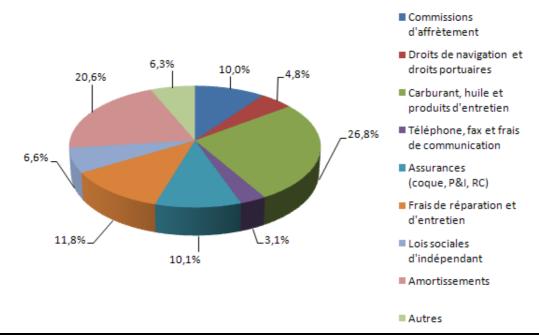


Figure 22 : répartition des postes de coûts de bateaux Freycinet (source : ITB, 2010)

Une étude lancée par EPF a évalué le coût de construction de nouveaux bateaux entre 220 et 600 000 euros (390 000 euros en moyenne), selon le lieu de construction. Les bateaux d'occasion coûtent entre 80 000 et 200 000 euros. En termes de financement, pour un 38 m dont la valeur est d'environ 100 000 euros, la durée d'emprunt ne dépasse pas 10 ans. L'amortissement comptable est également établi sur 10 ans. Après 10 ans d'exploitation, il est fréquent que des travaux mécaniques importants soient nécessaires ou que de nouvelle normes techniques nécessitent des adaptations du bateau, avec souvent un nouvel emprunt à la clé. Un allongement de la durée du crédit rendrait moins tendue la situation financière des bateliers, au prix d'un coût total plus élevé. Aujourd'hui, il semble qu'il y ait des possibilités d'amortissement en 2 x 10 ans.

L'étude confiée au bureau d'études ANTEOR (cf. annexes) fait apparaître, pour les automoteurs Freycinet transportant des vracs secs, un manque de chiffre d'affaires d'environ 25 000 euros (sur un chiffre d'affaires global d'un peu plus de 60 000 euros) ... soit presque la rémunération « normale » d'un batelier..., pour couvrir l'ensemble des coûts d'exploitation, y compris l'amortissement (ce qui explique le vieillissement de la flotte)... bien que l'étude montre, qu'assez curieusement, les économies découlant de la réduction des coûts d'entretien et de maintenance induits par le renouvellement de la flotte permettraient de financer une partie importante du surcoût de l'investissement correspondant à ce renouvellement. Tous les bateliers interrogés dans le cadre de l'étude ANTEOR ont acheté leur bateau d'occasion en pleine propriété.

Date de construction	1956
Date d'acquisition moyenne	1986
Prix d'acquisition	46 803 €
Valeur assurée du bateau	110 959 €
Durée de l'emprunt	7 ans
Durée d'amortissement comptable	11 ans
Age moyen à la date de l'enquête	49 ans
Durée d'utilisation depuis l'acquisition	19 ans
Montant de l'aide obtenue pour l'achat	5 387 €
Taux de financement par emprunt	66%
Valeur de marché du bateau	73 499 €
Durée totale d'exploitation	84 ans

Tableau 5 : caractéristiques économiques d'un bateau Freycinet (source : ANTEOR, 2005)

Le bateau Freycinet actuel engendre des investissements assez lourds liés au vieillissement et à l'obsolescence du matériel e.g. plats bords, hélice de proue, coque, groupe propulseur, panneaux de cale, embrayage, réfection moteur, gouvernail, aménagement, mise aux normes.

Créée en avril 2009 par Entreprendre Pour le Fluvial (EPF), Fluvial Initiative, financée par des partenaires publics, des collectivités locales et des organismes privés, bénéficiant des garanties d'Oséo et du concours de plateformes de bassin, intervient par l'octroi de prêts d'honneur, avec pour objectif de faciliter et sécuriser les investissements dans le secteur fluvial. Le prêt d'honneur à taux zéro vient en complément de l'apport personnel du ou des créateurs d'entreprises. Il est sans intérêts, sans garanties personnelles exigées et remboursable sur 5 ans, avec un différé de remboursement de 6 mois. Prêt personnel, considéré comme de l'apport en fonds propres par les établissements financiers, il facilite la mobilisation des crédits bancaires. Ce prêt d'honneur s'adresse à des entrepreneurs ayant les qualifications professionnelles requises, et dont les projets présentent des perspectives crédibles de viabilité.

Les aides spécifiques au mode fluvial remontent à 1986 avec le plan économique et social (PES) qui s'est étalé sur la période 1986-1998 et dont le but principal était de diminuer l'excédent d'offre. Le PES était réservé aux exploitants de bateaux captifs ou d'une capacité unitaire inférieure à 450 Tpl (Tonnes de port en lourd, petit gabarit). Le PES, financé dans un premier temps par l'État et, depuis 1997, à parité entre VNF et l'État, comportait différents volets et s'appuyait sur un budget annuel d'environ 6 millions d'euros. Il avait une triple vocation :

- Assurer des conditions correctes de sortie de la profession;
- Diminuer la capacité excédentaire de l'offre ;
- Moderniser l'outil.

Concrètement, il s'est traduit par des aides financières accordées à divers titres (départ en retraite, modernisation de l'outil, installation de jeunes bateliers) et surtout par des actions de déchirage, c'est-à-dire de destruction d'une partie de la cale qui a concerné essentiellement les bateaux de petit gabarit.

Parallèlement au plan français, la Communauté européenne a pris, en 1989, des mesures afin de réduire les surcapacités dans le secteur de la navigation intérieure. Ont ainsi été décidés des actions de déchirage et l'instauration du mécanisme dit "vieux pour neuf" qui imposait des conditions à la mise en service de nouvelles unités : toute nouvelle création de cale devait ainsi être contrebalancée par la suppression d'un volume équivalent de cale ancienne ou par une indemnité. En avril 1999, le Conseil européen a mis fin au programme en adoptant un régime de

transition de quatre ans, abaissant progressivement jusqu'à zéro le ratio de déchirage ou la contribution spéciale préalable à l'acquisition. Désormais, toute mise en service de cale nouvelle ne nécessite plus le déchirage d'un vieux bateau ou le paiement d'une indemnité financière.

On citera aussi:

- Les prêts verts OSEO pour le fluvial qui permettent d'emprunter jusqu'à 3 millions d'euros à un taux de 1,39% ;
- Le Contrat de Plan État-Région (CPER): 12 M€ inscrit sur 2007-2013 pour le développement du réseau (action T18);
- La mise à disposition de moyens d'étude et de conception de solutions logistiques (cf. AMO logistique à compter du 1er Janvier : 50k€/an) ;
- Les leviers financiers offerts par VNF et EPF concernant les embranchements fluviaux, ou les aides à la cale.

II.E. Les acteurs

II.E.1. LES ACTEURS DE LA LOGISTIQUE FLUVIALE

Différents acteurs sont concernés par la logistique fluviale. Tous n'ont pas le même degré d'implication et interviennent plus ou moins directement. Ils peuvent être organisés par types en fonction de leur rôle :

Opérateurs :

- O Bateliers: les artisans bateliers ont pour rôle de transporter les marchandises en naviguant sur les voies fluviales; cependant leur métier prend différentes formes puisqu'il s'agit en plus de naviguer, à la fois d'assister au (dé)chargement, de nettoyer et d'entretenir le bateau (y inclus la cale), ou encore d'assurer le suivi administratif (notamment des voyages) et la gestion commerciale.
- Éclusiers: ils interviennent pour permettre aux unités fluviales de passer les écluses du réseau. Agents d'exploitation des voies navigables, ils sont responsables du fonctionnement des écluses auxquelles ils sont affectés. Ils font respecter les priorités et la sécurité. En plus de réguler le trafic, ils participent également aux travaux d'entretien et tiennent le registre des passages. Enfin ils jouent un rôle d'accueil auprès des usagers et est en liaison avec la gendarmerie fluviale.
- O Contrôleurs : le chargement de certaines marchandises (e.g. céréales) peut faire l'objet d'une surveillance par un contrôleur, ainsi que d'une inspection de la propreté de la cale et une vérification de la qualité de la marchandise.
- Autorités portuaires (maritimes et fluviales) et manutentionnaires interviennent pour permettre le passage portuaire, notamment le chargement et le déchargement des marchandises.
- O Compagnies fluviales de navigation : généralement propriétaires de barges et d'unités spécialisées (e.g. chimie, hydrocarbures), elles emploient des pousseurs et

des automoteurs avec des équipages salariés. Les grandes dimensions de leurs unités fluviales les rendent captifs, limitant en général leurs offres à un bassin fluvial (à grand gabarit) donné. Ces compagnies maîtrisent généralement l'ensemble des chaînes logistiques et assurent le déplacement de la marchandise de bout en bout. Elles sont organisées pour réaliser les transports programmés de lots importants de marchandises sur les voies à grand gabarit, principalement au départ ou à destination des ports maritimes.

- Petites flottes: ce sont des entreprises de taille moyenne, constituées généralement des patrons bateliers qui se sont équipés de plusieurs bateaux et qui rémunèrent quelques salariés.
- Transporteurs routiers, logisticiens, et organisateurs de transport peuvent intervenir en tant que partenaires opérateurs, notamment pour la réalisation des pré et post acheminements routiers d'un service fluvial.

• Partenaires commerciaux :

- O Chargeurs et commissionnaires : ils apportent à la voie d'eau les différentes marchandises (générales sèches, liquides...) à transporter.
- Courtiers : ce sont des intermédiaires, représentés par la chambre syndicale des courtiers de fret fluviaux et auxiliaires de transport qui ont pour objectif de rapprocher les transporteurs et les chargeurs. Le fret est confié aux bateliers par les courtiers, sauf pour ceux qui ne transportent que des matériaux de construction et qui dans ce cas travaillent directement pour une seule société.

• Acteurs industriels :

 Bureaux d'étude d'architecture navale, chantiers de construction et équipementiers fluviaux interviennent pour la définition et la fabrication des moyens et équipements pour la navigation fluviale (y inclus les systèmes d'information et de communication, et les moyens de manutention et de conditionnement des marchandises).

• Acteurs économiques et financiers :

- o Assurances
- o Investisseurs:
 - Fonds d'investissements
 - Institutions financières e.g. banques
- Gestionnaires de programmes d'aides :
 - État (CPER), ADEME, VNF
 - Communauté Européenne (Interreg, Marco Polo)

Acteurs institutionnels :

- Voies Navigables de France
- o Communautés urbaines et d'agglomérations
- Chambres de Commerce et d'Industrie, Conseils Régionaux

- Associations professionnelles (pour les différents corps de métier concernés) :
 - o Secteur fluvial :
 - Chambre nationale de la batellerie artisanale (CNBA), affiliée à l'organisation européenne des bateliers (OEB)
 - Comité des Armateurs Fluviaux (CAF), affilié à l'Union Européenne de la Navigation Fluviale (UENF)
 - Coordination artisanale du transport fluvial (CATF)
 - Association de mariniers e.g. Association des Mariniers de Bourgogne
 - Association pour la promotion de la voie fluviale e.g. EPF
 - Chargeurs: l'association des utilisateurs de transport de fret (AUTF)
 - Transport et logistique : TLF, OTRE, FNTR...
- Association de protection de l'environnement, de riverains.

II.E.2. LES PRINCIPAUX ACTEURS DU RÉSEAU FREYCINET

En plus de naviguer, écluser, s'affréter, charger et décharger, un artisan batelier a beaucoup d'autres tâches relatives à l'entretien, à la gestion administrative... Contrairement à un routier, le batelier (et la batelière) peuvent effectuer une partie de ces travaux en route. Traditionnellement, le travail est partagé par le batelier et la batelière. Souvent, les deux ont un permis de navigation. Généralement il n'y a pas d'autre membre d'équipage (matelot), ceci n'étant pas (légalement) nécessaire (pour les petits bateaux, de moins de 55m), l'espace manquant par ailleurs et le chiffre d'affaires étant faible.

Les artisans bateliers représentent un ensemble de petites entreprises, employant, par convention, jusqu'à 6 salariés. Ils sont en général équipés d'automoteurs de petit gabarit (de type « Freycinet ») dont ils sont propriétaires. On compte actuellement 1094 entreprises au sein du secteur fluvial dont la majorité est de type artisanal. D'après l'étude ANTEOR (cf. référence en annexe) le statut juridique de l'entreprise est à 93% l'entreprise individuelle et 7% la SARL. Typiquement les artisans bateliers ont des conditions de travail adaptées à une activité de navigation à la demande avec des contrats au voyage selon les besoins de leurs clients. Ils représentent un secteur traditionnel attaché à son mode de vie. Et les pratiques traditionnelles (un batelier et une batelière) séduisent de moins en moins et tendent à disparaître : aujourd'hui, en France, certains estiment que moins de 800 familles subsistent.

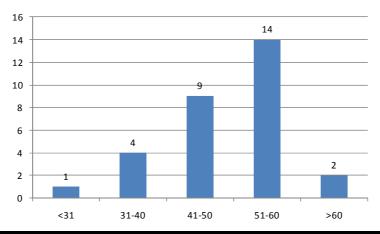


Figure 23: âge moyen des bateliers (source: ANTEOR, 2005)

La population des bateliers est par ailleurs vieillissante. D'après l'étude d'ANTEOR (cf. référence en annexe), en 2015 plus de trois bateliers sur quatre aura atteint l'âge de la retraite. En parallèle les bateliers éprouvent de plus en plus de difficultés à trouver des apprentis à former. On identifie une tendance générale au recul des vocations dans la batellerie.

II.E.3. LA FORMATION

Le Certificat d'Aptitude Professionnelle (CAP) de navigation fluviale est une formation conseillée pour tous les métiers de la navigation qui s'effectue en deux ans après la classe de troisième. Il ne constitue pas un diplôme obligatoire pour accéder à la profession de batelier.

Des certificats de capacité sont par ailleurs nécessaires pour naviguer, que l'on soit salarié ou indépendant. Les textes en vigueur prévoient un seul certificat de capacité quels que soient le type de bateaux, la taille ou la motorisation. Le certificat de type B permet l'accès à l'ensemble des voies intérieures à caractère communautaire à l'exclusion des voies maritimes et du Rhin. Le certificat de type A permet l'accès à l'ensemble des voies intérieures à caractère communautaire excepté le Rhin. Des travaux sont actuellement en cours afin d'harmoniser les conditions de navigation et notamment permettre aux détenteurs de permis pour les voies d'eau européennes d'accéder à la navigation sur le Rhin.

Des certificats spécifiques permettent de circuler sur les voies d'eau françaises non reliées aux voies d'eau européennes (le certificat de type A ou B n'est alors pas exigé) :

- Catégorie PA: pour les conducteurs d'un bateau non motorisé de moins de 15 mètres transportant des passagers en service saisonnier sur un parcours limité;
- Catégorie PB : pour les conducteurs d'un bateau de moins de 35 mètres transportant au plus 15 passagers en service saisonnier sur un parcours limité ;
- Catégorie PC: pour les conducteurs d'un bateau de marchandises de moins de 20 mètres.

II.E.4. LA DEMANDE DES ACTEURS

II.E.4.a) Les bateliers

Comme le diagnostique l'étude ANTEOR (cf. référence en annexe) au travers des résultats des 30 entretiens réalisés auprès de la profession, les bateliers sont dans leur majorité très pessimistes sur leur avenir. Même s'ils identifient certaines évolutions positives au cours des dernières années (e.g. augmentation des trafics, amélioration du matériel). Les bateliers estiment perdre petit à petit leur pouvoir d'achat, notamment en raison des augmentations du prix du fuel et des charges (péages VNF, charges sociales, assurances), de la faible évolution des prix de fret, et des pertes d'exploitation. Ils estiment pourtant travailler plus qu'avant, en subissant les nouvelles difficultés induites au niveau familial, et plus généralement une dégradation de leur qualité de vie. La bourse de fret est en général regrettée, la relation avec les courtiers reste à améliorer, et plusieurs relèvent un individualisme en progression et des déséquilibres dans la répartition des coûts et bénéfices de la filière. La gestion du réseau fluvial est critiquée un certain nombre de fois e.g. entretien insuffisant des canaux, manque de capacité des infrastructures, faible fiabilité de l'électronique des écluses, horaires de navigation trop limités... Par ailleurs plusieurs bateliers

estiment avoir de plus en plus de difficultés à trouver des financements pour de nouveaux investissements. Beaucoup ne peuvent que constater le vieillissement croissant de leur matériel. Enfin, beaucoup regrettent le manque de jeunes attirés par le métier mais jugent cette désaffection légitime étant donné la faiblesse des revenus et du financement du secteur, le manque de pérennité des activités et la dégradation de la qualité de vie des acteurs du secteur. Finalement, sur les 30 bateliers interrogés par ANTEOR, 20 prévoient la disparition du Freycinet, notamment en raison de la concurrence du grand gabarit ou d'opérateurs étrangers, voire de la route. Pour autant tous les bateliers gardent encore un espoir de voir revivre le réseau Freycinet : tous ont des propositions à faire pour contribuer à la renaissance du petit gabarit. La demande la plus fréquente (presque un batelier sur trois) est relative à la construction de bateaux neufs. Beaucoup demandent par ailleurs la diminution des charges au sens large et l'augmentation des prix du fret. Très peu demandent l'augmentation de la productivité. L'amélioration de la gestion du réseau fluvial revient par ailleurs plusieurs fois. Certains bateliers se tournent enfin vers le futur et vers les jeunes en proposant la création de nouveaux cycles de formation (e.g. Bac Pro) pour faciliter et préparer leur accès à la profession, voire la mise en œuvre de systèmes d'aides qui leur seraient spécifiquement dédiés et visant à faciliter leur entrée au sein de la batellerie artisanale. La carence générationnelle qui semble devoir en résulter soulève la question de la pérennité du transport sur le réseau Freycinet, ainsi que du renouvellement de la profession. Un effort de formation aux métiers traditionnels du fluvial est crucial afin de disposer dans le futur d'une main d'œuvre disponible et qualifiée.

II.E.4.b) Autres acteurs de l'écosystème fluvial

Le besoin des autres acteurs a été appréhendé au travers d'une série de 22 entretiens (cf. annexe 2 pour plus de détails concernant la liste des acteurs interviewés et les comptes-rendus d'entretien).

Les principaux inconvénients du Freycinet concernent le coût d'exploitation des bateaux pour le tonnage transporté et le gabarit du réseau; son utilisation nécessite le passage de nombreuses écluses, ralentissant, de fait, l'avancée des unités. Par ailleurs les contraintes de tirant d'eau et tirant d'air limitent les capacités d'emport. Une difficulté souvent rencontrée provient du manque de visibilité sur les contrats de transport et sur la capacité à s'engager sur des investissements importants. Les réglementations qui pèsent sur les armateurs sont contraignantes, que ce soit au niveau des certificats communautaires, de l'état de la coque, du droit du travail... La concurrence de la route est par ailleurs très forte; en effet la rentabilité est moins bonne par rapport au camion dans le cadre d'une organisation traditionnelle en tramping : la massification ne joue pas suffisamment vu les volumes, et compte tenu du fait que l'on peut trouver une écluse tous les 3km sur le réseau Freycinet. La route a capté des parts de marché au mode fluvial car elle s'est adaptée. Le fluvial doit évoluer afin de proposer des offres compétitives. L'achat d'un bateau se rentabilise mieux sur le grand gabarit. Par ailleurs le fer risque d'être un concurrent important du Freycinet, dans les années à venir, notamment par le développement des Opérateurs Ferroviaires de Proximité (OFP). Pour le tirage à sec, il faut prévoir d'aller en Hollande ou dans les grands ports maritimes et fluviaux car il n'y a pas de cales sur le réseau Freycinet. En ce qui concerne l'entretien de timoneries télescopiques, de moteurs électroniques ou de radars (pour la grosse cale), il est nécessaire d'aller en Hollande, ou de faire venir un hollandais. En effet, en France on ne dispose pas forcément des bonnes compétences.

« Proposition de nouvelles Organisations de transport combiné par route et fleuve utilisant le réseau Freycinet »

A priori, la demande des chargeurs est réelle, mais il y a un problème d'offre. Ainsi les chargeurs préfèrent parfois faire des pré et post-acheminements par la route plus longs afin de se rendre directement au port de plus grand gabarit, et ce, afin de réduire leurs coûts.

Un service fluvial semble pertinent en cas d'embranchement d'un chargeur sur le réseau Freycinet, d'un passage portuaire ou de la livraison urbaine. Les services pendulaires sont un des scénarios potentiels. L'utilisation d'unité Freycinet pour la livraison urbaine semble judicieuse. Les unités Freycinet pourrait assurer l'acheminement final (le « dernier Km ») des marchandises à partir des canaux desservant de nombreuses villes françaises moyennes e.g. agglomération de Lille et de Strasbourg pour le transport de déchets (il est cependant à noter que le projet de transport de déchets depuis Strasbourg est abandonné depuis l'automne 2010), Casino (Franche-Comté) pour les approvisionnements du centre de Paris. Le conteneur présente un intérêt dans le cadre d'une desserte ville à ville pour de la livraison urbaine. La notion de hub est un aspect intéressant à creuser, notamment pour le transport de conteneurs. Le conteneur pourrait présenter un intérêt sur des marchés de niche. Il pourrait être intéressant de mettre en place un ponton Freycinet, ce qui permettrait de s'affranchir de la problématique des plats bords. Une faiblesse vis-à-vis du transport de conteneurs est la nécessité de disposer de conteneurs vides à proximité, ce qui se fait de moins en moins aujourd'hui. Il pourra aussi être nécessaire d'avoir la timonerie à l'avant afin de disposer de la visibilité suffisante.

L'organisation du travail peut être pertinente sous plusieurs formes: à la journée (chauffeurs routiers / jockeyage), à la semaine ou plus simplement à l'année (tel que pratiqué historiquement par les artisans bateliers). Il faudrait penser à un autre modèle que celui de l'exploitation familiale. Il est possible de penser à une exploitation industrielle sans logement à bord, avec logement du personnel à l'hôtel. La suppression du logement (et de l'habitation sur les bateaux) permettra de gagner en flexibilité horaire (e.g. organisation 3x8) et d'augmenter la capacité d'emport (bénéfice pour des marchandises peu denses). Une organisation sans logement sur le bateau implique de gérer le transport des bateliers sur le lieu de travail, avec les coûts qui y sont associés. Cette organisation présente l'avantage de s'affranchir des congés et de pouvoir faire tourner des salariés toute l'année sur l'unité fluviale.

Un des enjeux majeurs du Freycinet est, comme pour le camion, d'optimiser le taux de chargement et les charges d'exploitation. Il faut que le bateau soit adapté au mode de conditionnement à transporter et aux caractéristiques du réseau emprunté. Une unité fluviale polyvalente risque, au final, de n'être performante sur aucun trafic, ni aucun réseau. La forme de carène et la propulsion ne semblent pas être des sujets prédominants. De nombreuses unités Freycinet semblent aujourd'hui « sur-motorisées » par rapport aux vitesses requises et à une consommation en carburant économiquement viable. Imaginer un concept de convoi poussé composé de plusieurs bateaux Freycinet spécialement conçus pour être couplés (forme spéciale, moteur amovible...) parait faisable en théorie. Une construction de bateau permettant le chargement et le déchargement de palettes avec un moyen de manutention adapté, discret et rapide semble possible et pertinente. Plus généralement des solutions de manutention embarquée (e.g. grue pour palettes) pourront être envisagées si des réponses sont trouvées aux questions sur le tirant d'air et la stabilité des bateaux en fonction des conditionnements (e.g. conteneurs). La création d'un pousseur et de barges adaptés au réseau Freycinet ne paraît pas toujours pertinente, pour des raisons de capacité d'emport.

III. Diagnostic

III.A. Attentes de la filière

Sur la base des résultats de l'étude bibliographique et des entretiens, le diagnostic de la situation peut être tiré, spécifiant notamment les attentes de la filière sur les aspects logistiques, organisationnels, techniques et économiques.

III.A.1. ASPECTS LOGISTIQUES

Les différents acteurs rencontrés mettent en avant la nécessité de développer une offre intégrée pertinente. Celle-ci devra permettre un service porte à porte, sous la forme d'un processus entièrement maîtrisé par un interlocuteur unique, qui peut être un logisticien (ou un armateur). Pour les chargeurs le fait d'avoir plusieurs interlocuteurs pour organiser les transports (transporteurs routiers pour les pré et post acheminements, batelier, manutentionnaire...) est un frein au développement de solutions fluviales. Il est nécessaire de proposer une offre intégrée et de développer une chaîne complète de transport et de services logistiques capable de négocier avec plusieurs clients.

Le service devra par ailleurs être fiable et garantir la traçabilité de la marchandise. Il devra permettre de massifier les flux afin de faciliter l'optimisation du chargement et de la navigation des bateaux et de présenter une performance économique répondant aux attentes du marché (i.e. compétitive par rapport à la route). Notamment, un soin particulier devra être apporté à l'équilibre des flux, et à éviter les voyages à vide. Un enjeu crucial est de réduire au maximum les temps d'« immobilisation » du bateau.

III.A.2. ASPECTS ORGANISATIONNELS

Les acteurs rencontrés ont tous mis en avant la difficulté d'engager la construction d'une nouvelle unité fluviale à la fois sans connaître la réelle efficacité économique de la solution et sans avoir de visibilité sur la pérennité des flux identifiés. Le vieillissement de la flotte Freycinet semble être une des conséquences de cette situation, rares étant les acteurs s'engageant dans la construction d'unités neuves par manque de visibilité.

Une simplification administrative et documentaire (document unique, signature électronique...) apporterait des gains de productivité et permettrait notamment aux bateliers de se concentrer sur leur cœur de métier, naviguer et transporter des marchandises.

Enfin, attirer des jeunes dans la profession devient une nécessité. Par ailleurs il y a un réel besoin de formation dans les métiers connexes au fluvial.

III.A.3. ASPECTS TECHNIQUES

La principale contrainte technique que les bateaux doivent respecter concerne les dimensions imposées par le gabarit Freycinet.

En termes de motorisation le bateau devra être économique et propre ; la propulsion doit être adaptée pour permettre une navigation à 6 km/h. Les équipements devront permettre une manœuvrabilité importante afin de faciliter le passage des zones difficiles (écluses, ponts, croisement). Le bateau devra avoir la capacité de s'adapter à des marchandises et des

conditionnements différents. En fonction des cas des engins de manutention pourront être embarqués. Il faut aussi mettre en place de nouveaux moyens de manutention dans les ports pour un transbordement rapide, efficace et bon marché entre les bateaux provenant du réseau Freycinet et les bateaux de plus grand gabarit. La gestion du réseau de canaux doit aussi être améliorée, en termes de maintenance, de fiabilité et d'horaires de navigation. Concernant les horaires des écluses, il est possible d'envisager des améliorations, mais limitées (e.g. allongement de tronçons sans écluse). En effet, le 24h/24 sur le réseau Freycinet ne sera pas possible.

III.A.4. ASPECTS ÉCONOMIQUES

L'analyse de la pertinence économique d'un nouveau service doit impérativement être réalisée en amont. Une comparaison des principaux modes ou schémas concurrents doit être faite afin de valider sa pertinence économique (e.g. mode routier). Des partenariats publics/privés devraient plus rapidement permettre d'accroître la rentabilité du transport (coûts de manutention, d'infrastructures).

III.A.5. ASPECTS TERRITORIAUX

Plusieurs zones ont un intérêt particulier sur le réseau Freycinet :

- Les darses, qui permettent une liaison du petit vers le grand gabarit;
- Les zones d'influence des agglomérations situées en bord à voie d'eau ou à proximité du réseau Freycinet.

Sur le réseau Freycinet, certains endroits sont mieux situés car à la jonction entre deux marchés, et donc avec plus de chance d'être compétitifs par rapport à la route. Par exemple, en partant de St Quentin, il est possible d'acheminer des matériaux de construction vers l'Île-de-France, ou des céréales vers le Nord-Pas-de-Calais. Les darses identifiées sur le réseau à petit gabarit sont les suivantes :

- Seine :
 - o Marne
 - Canal du Loing
- <u>Oise</u> :
 - o Aisne
 - o Canal latéral à l'Oise
- Liaison grand gabarit :
 - Scarpe supérieure
 - o La Lys
- Moselle canalisée :
 - o Canal de la Marne au Rhin
 - o Meuse Canal de l'Est
 - Canal des Vosges
 - o Embranchement de Nancy
- R<u>hin</u> :
 - o Embranchement de Colmar
 - o Canal de la Marne au Rhin
 - o Canal du Rhône au Rhin

Saône :

- Canal du Centre
- o Canal de Bourgogne
- Saône à petit gabarit
- Canal du Rhône au Rhin

La figure qui suit schématise ces zones privilégiées.

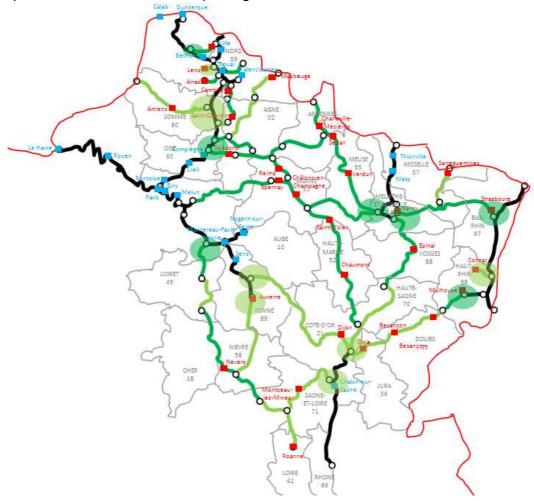


Figure 24 : darses du réseau Freycinet

La concentration très forte des trafics dans les ports liés aux agglomérations et sites industriels majeurs, qui demeurent les principaux générateurs des volumes échangés, se retrouve dans la répartition des chargements/déchargements le long des voies fluviales.

Un 38 m permet un transport de marchandises équivalent à 10 camions. Un service de logistique fluvial aura d'autant plus de bénéfices et de potentialités qu'il permet de s'affranchir de la traversée de zones à forte congestion routière ; les gains attendus en termes de désengorgement des villes permettront par ailleurs d'intéresser les régions et collectivités et de les intégrer au développement de la solution.

Afin de juger de la pertinence de logistiques fluviales pour la livraison urbaine et/ou dans le cadre de rotations courtes, les zones d'influence des différentes villes du réseau Freycinet ont été déterminées. Une zone d'influence est définie comme l'ensemble des points situés à moins d'une journée de navigation de la ville concernée; les calculs ont été réalisés à l'aide du logiciel PC Navigo. La figure suivante identifie ces zones.

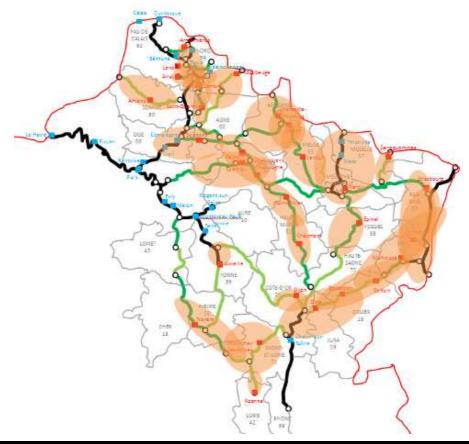


Figure 25 : zone d'influence des agglomérations du réseau Freycinet

Un des avantages d'un service logistique fluvial est de permettre de déporter une partie des stocks (e.g. produits à rotation lente) sur les bateaux et/ou sur les espaces fluviaux (ports, berges...), et d'ainsi disposer d'une variable d'ajustement supplémentaire pour la définition du stock objectif, et d'un outil pour lisser les besoins en surfaces d'entreposage. La réflexion sur le stock peut d'ailleurs conduire à la délocalisation des entrepôts vers des territoires où le foncier est moins rare et/ou moins onéreux, mais de fait plus éloignés des interfaces fluviales, avec pour conséquence un allongement des acheminements routiers (e.g. livraisons de magasins au départ des dépôts), voire l'abandon de la solution fluviale.

III.B. Bilan

Un bilan peut être dressé au travers de propositions de nouveaux services de transport utilisant le réseau Freycinet et de certaines de leurs conditions de mise en place.

III.B.1. CARACTÉRISTIQUES DES SERVICES À DÉPLOYER

III.B.1.a) Organisation du service

Il s'agit de proposer des services porte à porte et de livrer une solution complète et intégrée. L'offre intégrera différentes activités :

 Enlèvement/distribution des marchandises sur site : zone de dépose temporaire à quai/le long de la voie fluviale, site chargeur embranché, pré et post acheminements routiers, dernier km en zone urbaine ;

- Manutention sur site, y inclus port fluviaux et/ou maritimes; notamment tous les ports ne disposent pas de moyens de manutention adaptés; il est possible de s'affranchir de cette contrainte en intégrant des moyens de manutention au bateau;
- Transport fluvial: port/port, quai/port, quai/site, interurbain, ville-ville, site embranchézone urbaine...
- Dématérialisation des formalités administratives ;
- Achats/locations matériels e.g. conteneurs, palettes;
- Stockage temporaire et/ou entreposage;
- Prestations connexes e.g. nettoyage des bateaux, maintenance des équipements embarqués, accueil des chauffeurs routiers, services marchandises (e.g. conditionnement).

III.B.1.b) Gestion commerciale

Le service sera accessible sur le marché au travers d'un interlocuteur unique, front-office commercial en charge de trouver et gérer des clients (commercialisation du service auprès de la clientèle en collaboration avec les courtiers / affréteurs / transitaires). Il sera aussi en charge de l'organisation des services logistiques (stockage, entreposage...), de la coordination des acteurs exploitants et opérateurs, et de l'optimisation des schémas de transport. Trois modes de réservation pourront être envisagés afin de cibler la clientèle de la façon la plus large possible : « slots » réguliers, capacité ponctuelle ou présentation spontanée. La gestion commerciale d'un client transporteur est très différente de celle d'un chargeur dans la mesure où sa logistique est généralement plus diversifiée, moins répétitive et plus aléatoire. Différents niveaux de tarification pourront alors être appliqués en fonction des modes de réservation, des quantités de marchandises transportées, et de la pérennité des services.

III.B.1.c) Marchés visés

III.B.1.c.i. Filières pertinentes

Au regard des entretiens réalisés, et de l'analyse des flux de marchandises transportés par la route (flux de palette inclus), il paraît pertinent de considérer les filières suivantes dans lesquelles sont intégrées la catégorie NST 9 (machines, véhicules, objets manufacturés, transactions spéciales et transport combiné) et la catégorie NST 1 (denrées alimentaires et fourrages):

- Les céréales ;
- La grande distribution (produits alimentaires non périssables): sucre, eaux, biscuits, lait...
- L'habitat, le bois;
- Les matériaux de construction ;
- Le textile, qui présente moins de contraintes de délais que l'alimentaire;
- Les matières dangereuses;
- Les matériaux de recyclage (déchets).

En termes de conditionnements, le vrac et la palette semblent prometteurs. L'utilisation du conteneur devra être étudiée au cas par cas.

III.B.1.c.ii. Report de la route vers le transport fluvial

Afin de déterminer les tonnages de marchandises potentiellement captables sur le service depuis la route, et de distinguer les volumes conteneurisables de ceux qui seraient exclusivement transportés en vrac, les analyses de flux ont été réalisées à partir de données Douane et CAFT. En effet, ces seules données sont disponibles afin de distinguer les trafics pour la classification fine en catégorie NST. Les pourcentages de flux conteneurisables et/ou transportables en vrac estimés par grande catégorie NST dans le tableau ci-après seront par la suite utilisés pour évaluer les flux potentiellement captables depuis la route pour les transférer vers le fluvial.

NST		Conteneurisable	Vrac
0	00 Animaux vivants	0%	0%
	01 Céréales	100%	0%
	02 Pommes de terre	100%	0%
	03 Autres légumes frais et congelés et fruits frais	0%	0%
	04 Matières textiles et déchets	100%	0%
	05 Bois et liège	50% (autre que bois long)	
	06 Betteraves à sucre	0%	0%
	09 Autres matières premières d'origine animale ou végétale	50%	50%
	Produits agricoles et animaux vivants	45%	12%
1	Denrées alimentaires et fourrages	100%	0%
2	Combustibles minéraux solides	50%	0%
3	Produits pétroliers	10%	0%
4	41 Minerais de fer	0%	100%
	46 Ferrailles et poussiers de hauts fourneaux	100%	0%
	45 Minerais et déchets non ferreux	50%	50%
	Minerais et déchets pour la métallurgie	72%	28%
5	Produits métallurgiques	100%	0%
6	61 Sables, graviers, argiles, scories	50%	50%
	63 Autres pierres, terres et minéraux	50%	50%
	64 Ciments, chaux	50%	50%
	65 Plâtre	50%	50%
	69 Autres matériaux de construction manufacturés	50%	50%
	Minéraux bruts ou manufacturés et matériaux de construction	50%	50%
7	Engrais	50%	50%
8	81 Produits chimiques de base	10%	0%
	82 Alumine	100%	0%
	84 Cellulose et déchets	100%	0%
	83 Produits carbochimiques	100%	0%
	89 Autres matières chimiques	100%	0%
_	Produits chimiques	77%	0%
9	91 Véhicules et matériel de transport	10%	0%
	92 Tracteurs, machines et appareillage agricoles	10%	0%
	93 Autres machines, moteurs et pièces	100%	0%
	94 Articles métalliques	100%	0%
	95 Verre, verrerie, produits céramiques	100%	0%
	96 Cuirs, textiles, habillement	50%	0%
	97 Articles manufacturés divers	50%	0%
	99 Transactions spéciales	50%	0%
	Machines, véhicules, objets manufacturés et transactions spéciale	es 52%	0%

Tableau 6 : potentiel de flux de marchandises conteneurisées et de vrac par catégorie NST (src TLA)

III.B.1.d) **Acteurs visés**

L'activité est conditionnée par la demande des clients, et les acteurs importants à considérer sont :

- Les groupes industriels : ils disposent de volumes de marchandises suffisants pour une massification de leurs transports, et développent souvent des stratégies d'externalisation de leurs transports. Il en résulte que les chargeurs concernés n'interviennent plus directement dans l'exécution de leurs transports et dans l'organisation de leur logistique. Ces fonctions sont confiées à des prestataires, souvent recrutés par voie d'appel d'offres pour une durée de un à trois ans (logisticien, transporteur, commissionnaire). Ils deviennent alors les décideurs des modalités pratiques et techniques d'exécution des transports. Ils disposent en général de leurs propres moyens de transport (camions, chauffeurs) et privilégient en général leur utilisation. La tendance d'externalisation de la fonction logistique place les prestataires logistiques et les opérateurs de transport au premier rang des acteurs capables de générer de la valeur ajoutée et des trafics fluviaux.
- Les chargeurs de marchés spécifiques : ce sont les clients qui imposent le transport de par leur besoin. Certains marchés de niche nécessitent un transport fluvial en porte à porte permettant une pénétration dans les zones économiques.

III.B.1.e) Cibles de performances et de qualité de service

Les caractéristiques des composantes du service permettront de disposer d'un outil d'exploitation à la fois fiable et réactif. La fiabilité est une caractéristique connue du fluvial (ponctualité), qui est par ailleurs nativement sûr (vis-à-vis de la dégradation des marchandises pendant un transport, des pertes ou des vols) et propre. Le regroupement de bateliers en pool permettra d'apporter aux clients (chargeurs) une visibilité sur la disponibilité, la variété (vis-à-vis des types de marchandises pouvant être transportées) et la capacité de cale. Du fait de sa capacité de sourcing et de massification, la gestion du service par un intégrateur (4th PL) confère à l'organisation un potentiel de pérennité accru et une réactivité renforcée (e.g. modification de schémas de transport, disparition inattendue d'une partie de la cale). Il apporte ainsi aux financeurs des garanties et la visibilité nécessaire pour mieux maîtriser le risque d'investissement (public/privé).

Le service proposé pourra s'adapter à l'apparition de nouveaux marchés bénéficiant des caractéristiques de bateaux évolutifs. Son interopérabilité sera facilitée par l'utilisation d'équipements standards, notamment concernant les modes de conditionnements (e.g. palettes, big bags, conteneurs). La traçabilité sera gérée au travers du suivi des bateaux et des conditionnements (e.g. RFID). Par ailleurs, la sécurité sera facilitée par l'AIS.

Différentes cibles de performances économiques ont été identifiées, qui seront à moduler en fonction des aides financières qui pourront être accordées et de la spécificité des marchés :

- Investissement pour un bateau neuf : 200 à 300 000 euros²
- Durée d'amortissement : de 15 à 20 ans³

² Cette valeur ressort des entretiens réalisés au cours de l'étude.

³ Cette valeur ressort des entretiens réalisés au cours de l'étude. D'après la durée de vie des unités fluviales, et de façon à réduire ce poste de coût, il sera raisonnable, par la suite, de considérer une durée d'amortissement de 20 ans.

III.B.2. Propositions d'actions

Pour faire évoluer la batellerie, ANTEOR considère comme urgent de prendre certaines mesures.

III.B.2.a) Améliorer l'image de la batellerie et le confort du batelier

Il faut donner au batelier un outil de travail qui redonnera envie de s'investir (notamment aux jeunes), qui améliorera l'image de la batellerie et qui augmentera la rentabilité de l'entreprise. Aux conditions des hypothèses de l'étude, les coûts d'exploitation d'un bateau neuf ne sont pas très éloignés des coûts d'exploitation actuels. Il faut toutefois résoudre le problème du décalage des durées de vie de l'investissement avec les durées de financement pour solutionner les problèmes de trésorerie des entreprises.

III.B.2.b) Augmenter la productivité de l'entreprise

Il faut rechercher comment diminuer les temps perdus. Il semble que le regroupement d'entreprises sous forme de coopératives ou de sociétés pourrait donner aux bateliers la possibilité de négocier des organisations de transports plus performantes et plus globales qu'aujourd'hui (diminution des temps d'attentes, meilleure capacité à choisir ses temps libres, ajouter des services à la prestation de transport) pour avoir accès à une meilleure négociation avec le courtier ou le client industriel détenteur du fret.

III.B.2.c) Faire évoluer l'organisation de la filière

Il est urgent de donner de la visibilité à tous les acteurs de la filière sur leurs pratiques (clients; fournisseurs, courtiers et bateliers). Tous les acteurs ont des contraintes et des modes de fonctionnement que chacun doit connaître pour mieux appréhender les évolutions possibles. Il faut alors rechercher les modes d'organisation qui permettront d'augmenter la productivité. Il faut jouer gagnant-gagnant entre les acteurs : clients, bateliers, courtiers. La baisse des prix (point positif pour le client) pourrait être compensée par une meilleure organisation des flux (point positif pour le batelier, moins de temps d'attentes). Une négociation où les partenaires s'engagent sur des modes d'organisation et de fonctionnement en partageant les gains de productivité pourrait aboutir à une nouvelle et meilleure organisation de la filière. Ceci implique un regroupement des artisans bateliers. Un seul bateau ne peut pas envisager une telle négociation.

III.B.2.d) Rechercher les gains de productivité

Des gains de productivité peuvent être obtenus au travers de l'optimisation des temps d'attentes (entre deux chargements), des taux de chargement (dépasser 250 tonnes), et du taux de kilométrage à vide. Il s'agit de faire naviguer un bateau plus longtemps sur l'année pour économiser sur les coûts fixes à l'unité y compris avec l'embauche de personnel.

III.B.3. ÉVOLUTIONS POSSIBLES

III.B.3.a) Organisation

L'idée est de découpler la société d'organisation des services, les sociétés / coopératives d'exploitation des bateaux et les sociétés de manutention, ce qui permet de concentrer la prise de risque sur une société unique et de mettre en concurrence les opérateurs de manutention et/ou de transport routier pour les pré et post acheminements. Cette organisation se structure autour de différentes composantes :

- Intégrateur logisticien (4th PL): coordination des ressources en personnel et moyens, frontoffice commercial en collaboration avec des transitaires, courtiers, commissionnaires;
- Pool de bateliers organisés par région ; gestion par cellules (isodistance de 50 à 80km la plus longue distance réalisable par voie fluviale dans la zone concernée autour du barycentre des flux concernés i.e. origine d'un flux sortant ou destination d'un flux entrant, flux transitant vers/depuis le grand gabarit, considérant 8h de navigation, équipage réduit au seul batelier) ; organisation de relais de bateliers (prise en charge de l'unité fluviale, mise à disposition d'un véhicule pour permettre le retour du batelier en fin de service à son domicile) ; durée de navigation 8h, 14h, 18h, continu (relais) ; association batelier / région de navigation (habitation située entre le départ et l'arrivée : 8h en fluvial représentent au maximum 50 km par la route) ;
- Pool d'acteurs pour l'investissement en matériel de manutention (embarqué sur les bateaux et/ou à terre): société de location des moyens (spot: à la journée ou à la semaine e.g. déménagements, évènementiel, petits chantiers; courte durée: 1 mois à 1 an e.g. chantier, gravats, céréales; longue durée: 1 an à 3 ans contrat logistique e.g. livraison urbaine grande distribution; très longue durée: cas SAGRAM, produits de recyclage, déchets); mutualisation des achats; acteurs concernés: bateliers, chargeurs, VNF (aide à l'investissement en infrastructures et/ou superstructures proportionnelle à la durée de la convention et montant t-km), compagnies de navigation fluviales, ports, potentiellement participant à la société;
- Sous-traitants société de transport routière, ou flotte en propre d'un logisticien / d'un chargeur, ou encore moyen loué par la société d'exploitation conduite par un batelier ayant la double compétence de chauffeur routier (plan de formation à mettre en œuvre, organisation des tournées de collecte et distribution en tenant compte des lieux d'habitation des bateliers.

Dans le cas de l'utilisation de systèmes pousseurs + barges, des sociétés privées seraient créées pour l'exploitation des pousseurs, et des coopératives regroupant plusieurs bateliers seraient mises en œuvre afin de créer un pool de barges. Les barges pourraient aussi être exploitées par une compagnie de transport fluvial.

III.B.3.b) Logistique

L'offre du réseau Freycinet est à construire au cas par cas. L'implémentation d'un concept requiert de s'adapter au contexte local, à l'environnement dans lequel il doit s'intégrer et à la situation dans laquelle il est prévu d'être utilisé. Différents modes d'organisation vont structurer l'offre :

- Traditionnel, pour les traffics saisonniers; le principal enjeu concerne la diminution des trajets à vide (principalement aller i.e. vers le réseau Freycinet, allant prendre en charge).
- Dédié, pour des flux réguliers, massifiés et concentrés, avec un ou plusieurs bateaux pour effectuer le service (e.g. cas SAGRAM avec 325 000 tonnes sur 5 km en 2008).
- Mixte (grand gabarit et réseau Freycinet), pour des flux massifiés et diffus, qui consiste en brouettages depuis/vers le petit gabarit et en convois reconstitués sur le grand gabarit; pour rester compétitif (notamment vis-à-vis de services de transport concurrents purement grand gabarit avec pré et post acheminements routiers), ce type de schéma

nécessitera de disposer de parcours Freycinet avec une rentabilité similaire à celle de la route.

Différentes organisations de transport peuvent être envisagées :

- Trafic pendulaire sur distances courtes;
- Trafics intra-bassins dédiés et réguliers pour des logistiques locales e.g. transport de déchets, distribution urbaine ;
- Transport de groupage multi-produits : organisation de tournées de livraison e.g. en zone urbaine dense ;
- Trafics inter bassins au travers de l'organisation de convois.

Différentes évolutions pourront être envisagées :

- Optimisation des circuits logistiques, intégrant les pré et post-acheminements routiers ;
- Diminution des retours à vide, rééquilibrage des trafics allers et retours, triangulaires ;
- Adéquation et planification moyens de manutention amovibles embarqués à bord / présents à quai (e.g. bobcat, transpalettes, grue hydraulique, suceuse);
- Mise à disposition de zones de stockage temporaires et/ou entrepôts;
- Exploitation d'installations de lavage mobiles (changement de type de marchandises transportées entre l'aller et le retour e.g. matières dangereuses).

III.B.3.c) Financement

Différents outils financiers pourraient être appliqués pour faciliter la mise en œuvre de nouveaux services (et/ou l'accès des jeunes dans la profession) :

- Bourses pour les formations et l'accès à la profession;
- Prêt à taux 0%;
- Durée de prêt étendue pour l'investissement en nouveaux matériels ;
- Subventions:
 - ADEME pour l'achat équipement intermodal, une opération exemplaire et/ou de démonstration de transfert modal;
 - Ministère en charge de l'écologie pour l'aide au démarrage, ou pour l'aide à l'exploitation d'un service de transport combiné (concerne oe transport fluvial ou ferroviaire d'UTI);
 - Communauté Européenne avec Marco Polo pour des subventions d'exploitation au transfert modal et/ou avec effet catalyseur;
 - O Dans le cadre des Certificats d'Économie d'Énergie (CEE), de nouvelles fiches d'opérations standardisées applicables au transport sont parues. Des CEE peuvent être obtenus par la mise en œuvre de différentes actions telles que:
 - L'acquisition d'une unité de transport intermodal (UTI) neuve de toute taille dédiée au transport combiné fluvial-route, hors conteneur maritime de type ISO

- L'acquisition d'un wagon d'autoroute ferroviaire neuf
- L'acquisition d'une barge fluviale neuve dédiée au transport de marchandises (vrac et/ou conteneurs maritimes), hors transport d'unité de transport intermodal
- L'acquisition d'un automoteur neuf dédié au transport de marchandises, hors transport d'unité de transport intermodal
- L'acquisition d'un groupe frigorifique à haute efficacité énergétique, autonome ou non, monté sur un camion, une semi-remorque, une remorque ou une caisse mobile frigorifique neuve de plus de 3,5 tonnes
- La télématique embarquée pour le suivi de la conduite d'un véhicule
- L'utilisation d'un lubrifiant économiseur d'énergie

III.B.3.d) Formation

Il serait possible d'envisager des formations courtes pour des bateliers naviguant sur un canal spécifique. Certains gestionnaires de carrières (GSM ou Moroni par exemple) réfléchissent à reconvertir certains de leurs chauffeurs de camions en conducteurs de péniches. Plus généralement il faut valoriser la filière du transport fluvial, aujourd'hui quasiment inexistante dans les cursus d'enseignement de type bac professionnel ou BTS transports, en impliquant les collectivités territoriales.

III.B.3.e) Gestion de l'infrastructure

Les horaires d'ouverture de certains canaux pourraient être élargis (si le niveau de trafic le requiert); l'automatisation des écluses est assujettie aux questions de coûts, de sécurité et de reconversion des personnels des services affectés au fonctionnement des voies navigables. La télé opération des écluses pourrait être un compromis intéressant.

Par ailleurs le nombre de concessions de sites en bord à voie d'eau pourrait s'accroître : cela permettrait de limiter les ruptures de charge et d'implanter les fonctions d'entreposage indispensables pour répondre à la demande d'externalisation des chargeurs et aux besoins de transporteurs et prestataires logistiques, capables de générer durablement des trafics.

IV. Proposition de nouvelles solutions techniques pour le transport fluvial

IV.A. Caractéristiques détaillées du gabarit Freycinet

La phase 1 a permis, à partir de l'état des lieux, de mettre en évidence les difficultés rencontrées par le transport fluvial sur le réseau au gabarit Freycinet.

Alors que le volume total de fret fluvial est en hausse depuis 10 ans, les trafics en petit gabarit diminuent (-11% pour les trafics sur le réseau Freycinet entre 1998 et 2008, source : VNF 2009, « le trafic fluvial de 1998 à 2008 »). La flotte Freycinet est d'ailleurs en baisse depuis plusieurs années, avec pour conséquence des périodes d'insuffisance de cale sur certains marchés.

Des difficultés économiques sont mises en avant. Elles proviennent notamment du manque d'adaptation de l'outil de transport et du réseau lui-même (enfoncement et écluses). Seul le vrac peut être transporté (limitant les marchés captables, très peu de transport de marchandises en conteneurs ou palettisées) et les quantités transportées doivent être très limitées du fait du tirant d'eau réduit (la profondeur de la voie d'eau est relativement faible, voire même non assurée sur certains tronçons, la quantité de marchandises sera limitée par le tirant d'eau avant d'être limitée par la capacité de la cale). Enfin, les délais sont augmentés du fait du grand nombre d'écluses, ce qui limite également les possibilités de formation de convois (qui doivent être désolidarisés pour le passage des écluses).

L'étude prend donc en compte ces différents aspects et propose un nouveau matériel et de nouveaux services avec la possibilité de transporter de nouvelles unités de transport (conteneurs et palettes), compte tenu des contraintes du réseau (notamment enfoncement).

La prise en compte de ces facteurs doit permettre de proposer des schémas logistiques rentables et compétitifs, qui permettront d'attirer de nouveaux acteurs (notamment des jeunes), de nouveaux utilisateurs et clients (chargeurs) et ainsi d'accroître la part du report modal.

Les caractéristiques d'un Freycinet actuel sont les suivantes (ces données peuvent légèrement varier d'un bateau à un autre) :

Dimensions extérieures	Longueur x Largeur x Creux = 38,5m x 5,05m x 2,5m
Dimensions de la cale	Longueur x Largeur = 25m x 5m
Déplacement lège	70 tonnes (env.)
Port en lourd (tonnes)	à 1,8m de tirant d'eau = 250 t
	à 2,2m de tirant d'eau = 350 t
Motorisation	150 à 300 CV (voire de 90 CV à 450 CV)
Aménagements et équipements	Logement (couchette, cuisine, douche, WC)
COUT DU BATEAU	390 000 EUR en moyenne (de 220 000 à 600 000 EUR, selon le
	lieu de construction et les aménagements).
	Occasion : de 80 000 à 200 000 EUR

Tableau 7: caractéristiques d'un bateau Freycinet actuel

Caractéristiques d'un poids-lourd :

En comparaison, les caractéristiques d'un poids-lourd (tracteur routier + semi-remorque) ciaprès (elles peuvent légèrement varier d'un poids-lourd à un autre).

Dimensions intérieures d'une semi-	Longueur x Largeur x Hauteur = 13,5m x2,5m x 2,75 m (pas de		
remorque standard	limite de hauteur en France, excepté par les ouvrages d'art)		
Poids à vide	Tracteur + remorque = 13à 15 tonnes		
	Volume = 100m ³ Surface = 33,75m ²		
Port en lourd (tonnes)	Limitation à 40 tonnes =25 à 27 tonnes (selon tare)		
	Limitation à 44 tonnes = 29 à 31 tonnes (selon tare)		
Consommation	Moyenne (longue + courte distance) = 37,5 l/100km		
Aménagements et équipements	Longue distance : couchette dans la cabine		
COUT DU TRACTEUR + SEMI-REMORQUE	100 000 à 120 000 EUR (tracteur + semi-remorque)		

Tableau 8: caractéristiques d'un poids lourd

Les conteneurs les plus courants (20' et 40') sont les suivants :

TYPE	Dimensions EXT. (L x l x h)	Dimensions INT. (L x l x h)	Poids	Volume
20' Dry	6058 x 2438 x 2591 mm	5898 x 2350 x 2390 mm	2300 Kg	33 m3
20' HC	6058 x 2438 x 2896 mm	5898 x 2350 x 2698 mm	2450 Kg	37 m3
40' Dry	12192 x 2438 x 2591 mm	12032 x 2350 x 2390 mm	3860 Kg	67 m3
40' HC	12192 x 2438 x 2896 mm	12032 x 2350 x 2698 mm	3990 Kg	76 m3

Tableau 9: caractéristiques des conteneurs les plus courants

Les conteneurs sont transportés sur des remorques « plateaux » qui acceptent un conteneur 40' ou 2 conteneurs 20'. Dans ce cas, pour vider (ou remplir) le second conteneur, il faut veiller à pouvoir le décharger dans l'entrepôt qui le recevra car les portes ne sont pas accessibles lorsqu'il est sur le plateau ; les portes du 1^{er} conteneur peuvent être ouvertes et le conteneur déchargé à partir d'un quai d'entrepôt.

IV.B. Évolutions possibles

L'idée est de développer des bateaux spécialisés, spécifiquement construits en fonction des conditions de l'infrastructure sur laquelle ils sont destinés à évoluer, des conditions logistiques (i.e. marchandises transportées / conditionnement, performances cibles), et des conditions d'exploitation (trajet long ou court ne nécessitant pas de logement).

Il faut que le bateau soit adapté au mode de conditionnement à transporter et aux caractéristiques du réseau emprunté; il ne faut pas risquer de construire des unités trop polyvalentes et finalement inadaptées. D'un autre côté les bateaux doivent présenter un minimum de flexibilité vis-à-vis des services à garantir (permettant facilement leur réhabilitation / reconditionnement / reconversion). Afin de minimiser le risque financier, les bateaux à construire doivent présenter une flexibilité spatiale (pouvoir changer de zone de navigation), une réactivité au marché (pouvoir évoluer en termes de marchandises transportées, ce qui nécessite de réfléchir à la stratégie de services sur toute la durée de vie du bateau), un degré de modularité (composants amovibles e.g. logement, motorisation, cloisons, pont) et un potentiel d'évolutivité (e.g. pouvoir intégrer facilement une nouvelle technologie de motorisation) maximisés, tout en étant une réponse spécifique aux besoins locaux d'un pool de clients particuliers. Leur construction doit reposer sur une base standardisée (minimisation des coûts de construction), qu'il s'agira de décliner en gammes ; un aspect à rechercher sera notamment de permettre de mixer différents types de cargaison (e.g. palettes, conteneurs et vrac).

IV.B.1. COQUE ET STRUCTURE

Les évolutions à envisager pourront concerner différents aspects :

- Optimisation par rapport aux contraintes dimensionnelles du réseau et aux marchandises à transporter: pouvoir être adapté au transport de bois en terme de tirant d'eau (i.e. bateau avec enfoncement plus important), de palettes pour la livraison urbaine, de matériaux de construction;
- Diminution des épaisseurs des structures des coques ;
- Modularité de la cale (cloisons, panneaux de cales amovibles);
- Installation de :
 - o Timonerie télescopique, à l'avant (e.g. SAGRAM), amovible ;
 - Système de ballastage (pour mieux passer les ponts et les écluses);
 - o Revêtement antidérapant (plats bords);
- Amélioration de la capacité de chargement (avec enfoncement de 1,80m et 2,20m);
- Bateaux de 38,5m sur 5,05m, pouvant être couplés (latéralement, longitudinalement).

IV.B.2. MOTORISATION

Les évolutions à envisager pourront concerner différents aspects :

- Installation de :
 - o Propulseurs de manœuvre (d'étrave à l'avant et à l'arrière)
 - O Système de filtres à particules, systèmes de réduction des NOx sur les moteurs diesels e.g. technologie SCR: la réduction catalytique sélective (SCR) est un moyen de convertir les émissions d'oxydes d'azote (NO_x) des gaz d'échappement à l'aide d'un catalyseur, l'urée (NH₃), en nitrogène (N₂) et en eau (H₂O). La technologie SCR est disponible actuellement sur le marché pour traiter les émissions des cheminées industrielles (e.g. incinérateurs, centrales à charbon). De plus ce système est déjà appliqué sur les poids lourds, et de manière plus récente sur les bateaux. Des développements sont encore nécessaires. Destiné à réduire les émissions de polluants atmosphériques des nouveaux moteurs, les essais réalisés sur les unités fluviales ont montré que le système SCR entraînait des gains allant jusqu'à 7,5% des émissions de gaz à effet de serre.
- Développement (dans le cas d'un besoin important d'énergie à bord) de solutions hybrides diesel-électrique et/ou mise en œuvre de solutions propres : électrique, gaz (bio-gaz, LNG), H₂ à long termes ; cela concerne aussi l'adaptation de la propulsion diesel-électrique à des exploitations spécifiques : le diesel-électrique est une technologie ancienne, appliquée à des navires particuliers depuis une centaine d'années. L'idée est d'imaginer une centrale de production électrique performante, alimentant toutes les sources d'énergie du bord. Seul un calcul sur un cas précis peut établir des éventuels gains de performance. Des gains de l'ordre de 5 à 10% seraient cependant susceptibles d'être atteints ;
- Utilisation d'une motorisation amovible (bloc moteur interchangeable);

- Segmentation des moteurs de propulsion (pour adapter la puissance optimale nécessaire aux conditions d'exploitation): il s'agirait d'installer deux modes de propulsions, l'un adapté au petit gabarit, et l'autre au grand gabarit. La segmentation consiste à équiper un bateau non pas d'un seul moteur (qui ne présentera qu'une phase limitée de fonctionnement optimal), mais de deux ou plusieurs moteurs couplés (qui permettront d'aborder plusieurs phases de fonctionnement dans des conditions optimales) et de préférence des standards poids lourds. Des gains de 5 à 10% sont attendus car il y a économie de carburant, mais ceux-ci peuvent varier en fonction du type d'exploitation;
- Installation d'une puissance adaptée aux vitesses requises et pour une consommation en carburant économiquement viable.

IV.B.3. GESTION ÉNERGÉTIQUE

Les évolutions à envisager pourront concerner différents aspects :

- Énergie d'appoint (solaire, vent, valorisation énergétique des déchets): l'énergie solaire offre des possibilités limitées. Elle est néanmoins pertinente dans le cadre de l'utilisation de panneaux photovoltaïques sur des bateaux dans le but d'alimenter en électricité une partie des équipements d'éclairage (feux de navigation, éclairage des espaces de travail).
 Les gains en carburant réalisables pour une telle application seraient de l'ordre de 3% (cf. référence 1 en annexe 1.1).
- Équipements d'alimentation à quai et raccordement au réseau national, système de recharge rapide, implantation connectique à terre (e.g. écluses): il s'agit d'utiliser de l'électricité en stationnement en vue de supprimer les groupes électrogènes; la fourniture en électricité des bateaux en stationnement consiste à équiper les quais en prises électriques raccordées au réseau terrestre. Ainsi les bateaux n'ont plus à produire l'électricité qu'ils consomment lorsqu'ils ne sont pas en navigation. La technologie est testée sur les réseaux européens mais nécessite des améliorations et des études poussées de faisabilité technique et économique pour une application concrète.
- L'utilisation d'un économètre permettra d'économiser du carburant. Cet instrument se compose de deux capteurs (alimentation et retour) et d'un afficheur sur le tableau de bord.
 Il fournit la consommation totale (e.g. par voyage), à l'heure ou au kilomètre, ainsi que le nombre de tours et d'heures moteur.

IV.B.4. MANUTENTION

Des outils de manutention amovibles pourront être intégrés aux bateaux pour les solutions passant par des petits ports ou en livraison urbaine. Les équipements à embarquer dépendront des situations, plus particulièrement du type de marchandises et de conditionnements à transporter :

- Grue pour les matériaux de construction ;
- Bras de manutention (e.g. repliable à hauteur de la timonerie) pour les palettes (ou les véhicules personnels);
- Bras de manutention ou portique sur rail pour des conteneurs (e.g. déchets);

- Suceuse (vis sans fin évite la dépendance vis-à-vis des horaires des silos) pour les céréales ;
- Tapis roulant intégré à la cale.

Il s'agira aussi d'étudier la possibilité d'une manutention par le transporteur routier / le chargeur (en temps masqué) ou le batelier (e.g. système télécommandé cf. SAGRAM). Des systèmes automatisés pourraient être mis en œuvre pour donner la possibilité aux bateliers de piloter les engins de manutention à terre (grue).

La conception du bateau pourra permettre d'accoster à des quais et appontements privés dépourvus de tout moyen de manutention : une rampe d'appontement pourra être envisagée (type hayon, rampe se déplaçant latéralement avec motorisation linéaire) pour permettre le roulage d'un équipement (type chariot élévateur) entre la terre (quai) et le bateau afin d'assurer le déplacement d'une charge sur une distance limitée (au maximum quelques centaines de mètres).

Il semble notamment possible de réaliser des économies sur le transbordement depuis le petit vers le grand gabarit, par le biais d'une suceuse (vis sans fin) qui peut être achetée en commun par plusieurs bateaux. L'intérêt est de pouvoir s'affranchir des silos, et notamment de leurs horaires (e.g. fermeture à 15h).

L'utilisation d'un tapis roulant directement intégré à la cale peut aussi être efficace.

Un équipement de manutention embarqué pourrait notamment être intéressant pour les déchets, en permettant de s'affranchir des coûts relativement importants des équipements et du personnel à quai pour la manutention. La solution d'un bras embarqué pouvant se replier à hauteur de la timonerie serait la moins coûteuse (< 200 000 euros). L'intérêt est de pouvoir recharger directement le bateau, notamment lors de cycles de manutention assez longs. Différents moyens de préhension peuvent être employés (pince, grappin...) et la productivité est assez élevée. Par ailleurs, ce type de système peut être télécommandé et contrôlé de façon déportée (e.g. depuis le quai).

Néanmoins, l'implantation d'équipements de manutention à bord d'un bateau induit des contraintes sur sa structure ainsi que sur la marchandise à transporter. Si des équipements de manutention sont embarqués (e.g. grue sur rails), il faut prendre en considération les contraintes de tirant d'air du réseau Freycinet et donner à ces équipements la capacité de s'abaisser.

Enfin il est à noter que des véhicules personnels sont parfois embarqués sur les bateaux, que l'on charge/décharge à des embarcadères spéciaux à l'aide d'une grue hydraulique ou de deux planches.

IV.B.5. Construction

Les évolutions à envisager pourront concerner différents aspects :

- Optimisation des coûts de fabrication : des unités fluviales définies autour d'un concept de base (ossature) et d'un choix de gammes et de variantes permettant de le décliner pour s'adapter aux besoins du marché;
- Planification à long terme de la production pour intéresser les chantiers et obtenir des prix optimisés.

IV.B.6. Système d'information et de communication

Les évolutions à envisager pourront concerner différents aspects :

- Disponibilité de l'accès à Internet sur l'ensemble du réseau Freycinet;
- Transpondeur AIS;
- Équipement radio pour la réception simultanée de la radio de navigation fluviale sur deux canaux VHF (bateau/bateau et bateau/rive);
- Radar pour la présentation du trafic dans l'environnement proche du bateau;
- Smartphone et/ou PC avec modem et installations de communication mobile (GSM) pour un accès au courrier électronique, à Internet et aux annonces électroniques;
- Installation ECDIS pour la navigation intérieure avec cartes électroniques de navigation (CEN), en mode information et navigation (avec superposition de l'image radar);
- Échange d'information : SIF, public/public, public/privé, B2B;
- Outils pour la formation (observatoire, simulateurs);
- Système de traçabilité notamment pour les matières dangereuses (RFID, mise à jour ETA);
- Système de monitoring (e.g. chaîne du froid, lutte contre le vol);
- Système d'échange de données navire-navire (e.g. vitesse, cargaison, dimensions) pour traitement par des outils d'aide à la navigation (e.g. en cas de croisement difficile);
- Outil d'aide à la décision pour les armateurs/bateliers et les investisseurs ;
- Outil d'aide à la maintenance ;
- Outil d'aide à la conduite e.g. éco-conduite, accostage, itinéraire optimal, vitesse optimale en fonction des conditions de navigation, anti-collision, pilote automatique : le monitoring et les bonnes pratiques d'exploitation des bateaux intègre à la fois la sensibilisation et la formation des conducteurs à l'éco-conduite, le suivi des consommations et l'installation d'équipements de suivi et d'exploitation (économètres, loch...). Les gains peuvent atteindre 5% sur les consommations et les émissions de gaz à effet de serre;
- Développement d'un système d'information en mode ASP pour la gestion du service, interconnecté aux systèmes des logisticiens et des chargeurs ainsi qu'au systèmes des autorités et gestionnaire d'infrastructure ou encore aux bourses de fret existantes;
- Utilisation de bourses de fret sur Internet (e.g. transport routier).

IV.B.7. RÉGLEMENTATION

Les évolutions à envisager pourront concerner différents aspects :

- Équipage d'une seule personne : ceci est déjà possible sur certaines voies, par arrêté ; les conditions posées sont la capacité physique du marinier (certificat médical) et la présence d'un propulseur d'étrave sur le bateau ;
- Suppression du logement et de la cuisine à bord

- Dérogation sur le tirant d'eau (cf. présentation du service SAGRAM)
- Absence de plats-bords (cf. dérogation CCNR à l'étude)
- Harmonisation à l'échelle Européenne (e.g. navigation sur le Rhin)

IV.C. Synthèse des fonctionnalités

Les nouveaux bateaux reposent sur une base standard (cœur commun) qui est dotée de différentes fonctionnalités (i.e. la gamme des bateaux) afin de répondre aux besoins spécifiques du service dans lequel il est prévu de s'intégrer (i.e. le contexte de mise en œuvre du service). Les bateaux sont alors particularisés (i.e. les variantes de la gamme) en fonction des contraintes locales auxquelles il sera soumis (i.e. la situation de mise en œuvre).

Différentes gammes de bateaux peuvent être caractérisées, dépendant du type de service prévu :

- Transport mixte Freycinet / grand gabarit : organisation de convois sur le grand gabarit, distances longues, fréquence réduite (1-4 voyages par mois);
- Dédié: organisation de schémas réguliers entre une origine et une destination, distances courtes (aller-retour) ou moyennes (en cas de triangulaires), fréquence moyenne (2-4 départs par semaine);
- Livraison urbaine : organisation de tournées de livraison multi-points, distances courtes, fréquence élevée (1 départ par jour) ;
- Marchés de niche: transport spot, distances variables, contrat pour un voyage.

Au sein de chaque gamme différentes variantes pourront être définies en fonction des caractéristiques spécifiques :

- Des marchandises transportées : nature (alimentaire, BTP, matières dangereuses), densité et mode de conditionnement (vrac, palettes, conteneurs) ;
- Des zones de navigation : tirant d'eau, tirant d'air, courant, intempéries.

Les bateaux reposeront ainsi sur une base commune définie en termes de :

- Fonctions à assurer :
 - o Respecter les contraintes du réseau Freycinet
 - Dimensions nominales, timonerie télescopique, enfoncement adapté;
 - o Fournir une solution propre et économe en termes de consommation d'énergie
 - Motorisation diesel-électrique adaptée aux contraintes hydrodynamiques
 - o Permettre une grande flexibilité de marchés
 - Cale adaptable, motorisation évolutive, équipements de manutention amovibles;
 - Permettre la communication des informations requises
 - Traçabilité des transports, intégration SI externes, couplage AIS/ECDIS/radar, Internet mobile;
 - o Permettre un prix de service compétitif
 - Prix de construction de série cible : 200 à 300 000 euros ;

- Conditions à remplir :
 - o Financières:
 - Bourses (formation, accès à la profession);
 - Prêt à taux 0% et durée étendue ;
 - Aides: ADEME (achat équipement) et CE (subventions d'exploitation Marco Polo);
 - o Réglementaires:
 - Équipage réduit à une personne, absence de logement à bord ;
 - o Infrastructurelles:
 - Élargissement des horaires d'ouverture des canaux avec trafic identifié;
 - Télé opération de certaines écluses.
- Composants constitutifs à intégrer :
 - o Dimensions (L x l): 38,5x5,05 m;
 - o Motorisation:
 - Diesel-électrique ;
 - Technologie SCR;
 - Propulseur d'étrave ;
 - Raccordement à l'électricité du quai ;
 - Panneaux solaires ;
 - o Structure:
 - Timonerie télescopique à l'avant ;
 - Absence de logement ;
 - Système de ballastage ;
 - o Systèmes d'information et outils de communication:
 - Couplage AIS, ECDIS, et radar;
 - VHF, PC Internet mobile, GSM;
 - Économètre ;
 - Intégration aux systèmes d'informations B2B (logisticiens, chargeurs) et des autorités (SIF).

Les variantes des bateaux se distingueront alors en fonction des fonctionnalités spécifiques dont ils auront été dotés en termes de :

- Structure : équipement de couplage avec d'autres unités
- Manutention : équipements embarqués
- Systèmes d'information et de communication : traçabilité des marchandises (e.g. RFID, codes à barre)

IV.D. Élaboration de solutions pour le Freycinet

Le Cabinet Lebéfaude a présenté ses travaux sur les modélisations de nouvelles unités au gabarit Freycinet au cours de la phase 2.

Les solutions suivantes, initialement envisagées, ont été écartées :

- Le transport de conteneurs 20 pieds sur 2 niveaux n'est pas retenu car il existe des contraintes rédhibitoires de stabilité (besoin d'un plan de chargement très contraignant à chaque fois ou encore impossibilité de voyager à vide), par ailleurs, ce chargement et incompatible avec un tirant d'eau limité à 1,8 m.
- Le transport de conteneurs 20 pieds sur 1 niveau (et hors convoi) a été également écarté pour des raisons économiques (manque de capacité d'emport et de rentabilité).
- Les transports en convoi (1 automoteur + 1 barge motorisée ou 1 second automoteur) ne sont pas étudiés car ils ne peuvent être utilisés sur l'ensemble du réseau Freycinet du fait de la courbure nécessaire et des découplages trop fréquents pour le passage des écluses.
- Le transport de vrac (vraquiers) n'est pas l'objet de l'étude (c'est aujourd'hui la spécialité et le marché phare du Freycinet); ces flux peuvent toutefois être envisagés en complément de cale, en cas de retour à vide par exemple.
- Le transport plus particulier de biomasse en vrac (bois par exemple) a été écarté à cause du manque de polyvalence des bateaux à mettre en place. Un tel bateau a été étudié par le cabinet Lebéfaude, le rapport est disponible sur son site.
- Les formations « pousseur + barge(s) »qui permettent un découplage, fréquents sur le grand gabarit (à l'image de la formation « tracteur routier + semi-remorque » pour le transport routier), n'ont pas été développées au cours de l'étude compte tenu de la structure du marché (la flotte Freycinet est détenue par des artisans bateliers). Toutefois, cette configuration n'est pas totalement à exclure pour des réflexions futures car elle pourrait apporter des gains en termes d'enfoncement et d'immobilisation (même si ce dernier point est moins significatif qu'en grand gabarit où les moyens fluviaux sont plus couteux et les besoins en stockage flottant plus prégnants du fait des quantités livrées). De plus, cette configuration peut permettre le découplage des opérations de chargement/déchargement et du poussage.

Après analyse de différentes solutions, l'étude s'est concentrée sur 2 types d'automoteurs : un porte-conteneurs (UTI 7 pieds ou 10 pieds « high cube ») et un porte-palettes.

Les aspects techniques ont été étudiés, tels que les dimensions, les techniques et la capacité de chargement (poids maximum des marchandises et volume disponible), la stabilité dans différentes situations et au cours de différentes opérations, la vitesse minimum et maximum, la consommation ou encore le coût de leur construction.

Pour parcourir l'ensemble des canaux de type Freycinet (classe 1), ces automoteurs doivent avoir les dimensions suivantes :

Longueur	x largeur max	Inférieures à 39m en longueur et 5,2m en largeur (écluses nombreuses)	
Tirant d'e	au	Limité à 2,2m (voire 1,8m)	
Tirant d'a	ir	Limité à 3,5m (le plus souvent)	

Tableau 10: caractéristiques des unités fluviales compatibles du gabarit Freycinet

« Proposition de nouvelles Organisations de transport combiné par route et fleuve utilisant le réseau Freycinet »

Les automoteurs peuvent également naviguer sur des canaux à gabarit plus important, jusqu'au grand gabarit, même si ce n'est pas leur vocation (cf. suite de l'étude, organisation capillaire « hub and spoke »).

Caractéristiques techniques (communes aux automoteurs étudiés) :

- Selon prescriptions techniques de sécurité et de stabilité (arrêté du 30 décembre 2008)
- Les formes à l'avant ont été affinées pour améliorer les entrées d'eau
- Sur chacun des modèles, la timonerie est positionnée à l'avant afin de réduire les coûts liés à la « timonerie télescopique » (plus complexe et plus onéreuse).
- La circulation, de bâbord à tribord ou de l'avant à l'arrière du bateau, a été rendue la plus simple possible, avec une plage avant suffisamment vaste pour faciliter les manœuvres.
- Les automoteurs ont été étudiés avec et sans logement. Les versions sans logement permettent d'augmenter le volume dédié au transport de marchandises et d'abaisser les coûts de construction et d'entretien. Dans certains cas, il sera nécessaire de conserver un logement, notamment pour éviter les problèmes d'organisation (besoin de gardiennage du bateau et des marchandises pendant les périodes de repos ou encore gestion complexe d'une organisation en relais avec des risques de retard sur les parcours). Enfin, pour les artisans bateliers le bateau est un outil de transport et un logement, tous deux indissociables.

IV.E. Détail de l'AUTOMOTEUR PORTE-CONTENEURS 20'

IV.E.1. SPÉCIFICATION DU BATEAU CONÇU

Afin d'optimiser au maximum le gabarit Freycinet, la longueur du bateau est de 38.7m, la salle des machines est assez courte, avec un logement et une timonerie sur l'arrière, la cloison étanche avant est placée au plus près réglementairement de l'étrave ce qui permet d'obtenir une cale de 30.3m et de placer 16 conteneurs 20 pieds.

Avec 2 couches de conteneur la hauteur totale du bateau est de 5,44 m. Le tirant d'air maximum étant de 3,5 m et le tirant d'eau maximum de 2,2 m, l'écart entre l'enfoncement maximum et l'enfoncement minimum est de 26 cm. Ce faible écart nécessite de pouvoir ajuster l'enfoncement du bateau en fonction des conditions d'exploitation du bateau (conteneurs vides ou pleins) grâce à des ballasts. Le poids total du bateau doit varier entre 325 tonnes et 398 tonnes.

Pour enfoncer le bateau et ainsi conserver un tirant d'air de 3.5 m, 100 tonnes de lest sont placés dans les fonds, cela permet aussi de gagner en stabilité, et 100 tonnes de ballast sont positionnées à la place de 4 conteneurs de la première couche. Les conteneurs se répartissent donc de la manière suivante :

Première couche : 6 conteneursDeuxième couche : 10 conteneurs

La largeur de deux conteneurs 20 pieds côte à côte est de 4.876 m, ce qui ne permet pas d'avoir des plats bords.

IV.E.2. CARACTÉRISTIQUES PRINCIPALES

La conception de ce porte conteneur répond à l'arrêté du 30 décembre 2008 relatif aux prescriptions techniques de sécurité applicables aux bateaux de marchandises, aux bateaux à passagers et aux engins flottants naviguant ou stationnant sur les eaux intérieures.

Le bateau est conçu pour effectuer le transport de conteneurs 20 pieds iso.

Ses caractéristiques sont les suivantes :

longueur: 38,7 mlargeur: 5,05 mcreux: 3.2 m

construction acier

déplacement lège: 160 tonnes, dont 100 tonnes de lest

ballast: 100 tonnes

port en lourd à 2,2 m de tirant d'eau: 320 tonnes
 port en lourd à 1.8 m de tirant d'eau: 246 tonnes

quantité maximum de conteneur 20 pieds: 16

« Proposition de nouvelles Organisations de transport combiné par route et fleuve utilisant le réseau Freycinet »

- volume de la cale: 430 mètres cubes
- timonerie télescopique à l'arrière.
- 1 logement pour deux membres d'équipages
- motorisation: 180 CV

IV.E.3. STABILITÉ DU PORTE-CONTENEURS

La stabilité du porte conteneur répond à la réglementation de « l'arrêté du 30 décembre 2008 relatif aux prescriptions techniques de sécurité applicables aux bateaux de marchandises naviguant sur les eaux intérieures », chapitre 22 « stabilité des bateaux transportant des conteneurs ». Le détail des calculs est en annexe.

Ces calculs de stabilité fixent les limites du bateau au niveau de son plan de chargement et déterminent si les conteneurs doivent être fixés ou non.

Les résultats de l'étude de stabilité sont les suivants :

- pour satisfaire à la réglementation en matière de stabilité, les calculs de stabilité conduisent à ne pas dépasser 1.6 m de hauteur de centre de gravité total du bateau
- les conteneurs doivent être fixés.

IV.E.4. CONTRAINTES RÉGLEMENTAIRES, TECHNIQUES ET D'EXPLOITATION

IV.E.4.a) Contraintes réglementaires

La réglementation en matière de stabilité limite la hauteur du centre de gravité du bateau : au meilleur des cas, si les conteneurs de la première couche sont pleins, les conteneurs de la deuxième couche ne peuvent contenir que 4.8 tonnes de marchandise chacun. (Soit environ 22% de la capacité maximal des conteneurs qui est de 21.86 tonnes). Les calculs ont été fait suivant la prescription du bureau Veritas de prendre un poids maximum de 17 tonnes par conteneur (conteneur+marchandise).

Le bateau n'ayant pas de plat bord, un système de passerelle amovible pour passer de l'avant à l'arrière doit être mis en place, ce qui pose des problèmes de stockage et de validation par les services et organismes compétents.

IV.E.4.b) Contraintes techniques

La largeur de deux conteneurs côte à côte engendre une structure extrêmement réduite au niveau des bordés. Le bateau risque donc d'être fragile.

La faible distance entre les bordés et les conteneurs implique des risques de chocs entre le bordé et les conteneurs pendant les phases de chargement et déchargement, et donc une détérioration du bateau.

Le lest, les ballasts, la timonerie télescopique en font un bateau complexe et sont des postes coûteux tant à la construction qu'à l'entretien.

IV.E.4.c) Contraintes d'exploitation

Afin de respecter le tirant d'eau maximum de 2.2 m et le tirant d'air maximum de 3.5 m, le poids du bateau doit impérativement rester entre 325 et 398 t. Pour atteindre les 346 tonnes, les ballasts doivent être pleins, mais un minimum de cargaison de 30 tonnes doit être embarqué.

Pour ne pas dépasser les 398 tonnes, et respecter les contraintes de stabilité, un maximum de 136 tonnes de marchandise peut être embarqué.

Chaque chargement doit faire l'objet d'un plan de chargement afin de respecter les contraintes de stabilité. Ceci nécessite donc une formation du personnel naviguant.

Il est impossible de naviguer avec un tirant d'eau limité à 1.8 m, la hauteur des conteneurs sur deux couches étant supérieure au tirant d'air maximum autorisé.

IV.E.5. MODÉLISATION PC 20'

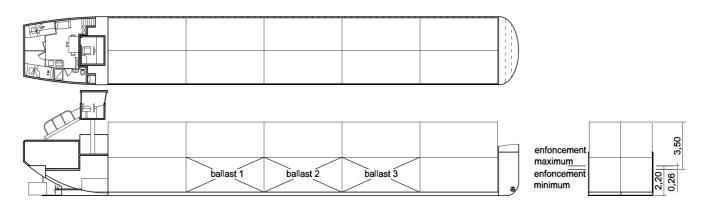


Figure 26: modélisation du porte-conteneurs 20' sur 2 niveaux

IV.F. Détail du modèle AUTOMOTEUR PORTE-CONTENEURS

IV.F.1. CONTENEURS

En complément des caractéristiques générales, l'automoteur porte-conteneurs présente des spécifications qui lui sont propres. Le bateau est conçu spécifiquement pour effectuer le transport de deux types de conteneurs, des conteneurs 7' et des conteneurs 10' High Cube (la cale du bateau peut aussi servir à transporter du vrac).

Les conteneurs présentent les caractéristiques suivantes :

Caractéristiques	Conteneur 7'	Conteneur 10'HC	
Dimensions extérieures (L x l x H)	2,2 x 1,7 x 2,0 (en mètres)	2,991 x 2,438 x 2,896 (en mètres)	
	Surface=3,74m ² Volume =7,48m ³	Surface=7,29m ² Volume=21,17m ³	
Dimensions intérieures (L x l x H)	2,0 x 1,6 x 1,8 (en mètres)	2,84 x 2,35 x 2,698 (en mètres)	
	Surface= 3,2m ² Volume=5,76m ³	Surface=6,67m ² Volume=18m ³	
Ouverture portes arrières (L x H)	2,106 x 1,949	2,342 x 2,338	
Poids d'un conteneur	Tare (conteneur vide) = 550 kg	Tare (conteneur vide) = 1300 kg	
(à vide et en charge)	Marchandises max /UTI = 5050 kg	Marchandises max /UTI = 8860 kg	
	Total = 6000 kg	Total = 10160 kg	

Tableau 11 : caractéristiques des conteneurs retenus pour l'étude

Les conteneurs permettent le passage de fourches pour la manutention par chariots. La largeur des 7' est adaptée au transport dans un camion benne.

Figure 27: illustration des conteneurs 7' et 10' HC

IV.F.2. SPÉCIFICATIONS DU BATEAU

Afin d'optimiser au maximum le gabarit Freycinet, la longueur du bateau est de 38.7m, la salle des machine est assez courte ce qui permet d'obtenir une cale de 28.25m et de 385 mètres cubes.

Le choix d'une timonerie sur l'avant permet d'éviter une timonerie télescopique, plus complexe et plus onéreuse. L'absence de logement abaisse aussi les coûts de construction et d'entretien.

Par rapport à une péniche Freycinet classique, les formes avant ont été affinées pour améliorer les entrées d'eau.

La circulation, de bâbord à tribord ou de l'avant à l'arrière du bateau, a été rendue la plus simple possible, en conservant un seul niveau pour l'ensemble du pont du bateau, et une plage avant suffisamment vaste pour faciliter les manœuvres.

La conception de ce porte conteneur répond à l'arrêté du 30 décembre 2008 relatif aux prescriptions techniques de sécurité applicables aux bateaux de marchandises, aux bateaux à passagers et aux engins flottants naviguant ou stationnant sur les eaux intérieures.

Le bateau est conçu pour effectuer le transport de deux types de conteneur, du 10 pieds HC, ou bien du 7 pieds. Pour le transport de conteneur 10 pieds, les conteneurs sont positionnés dans la

largeur du bateau, sur une couche. Il est possible de transporter un maximum de 11 conteneurs 10 pieds HC. Pour le transport de conteneur 7 pieds, il est possible de transporter deux couches, soit 48 conteneurs.

La cale du bateau peut aussi servir en partie ou entièrement à transporter du vrac.

Les caractéristiques du bateau, <u>avec</u> et <u>sans</u> logement, sont les suivantes :

Dimensions extérieures	Longueur x Largeur x Creux = 38,7m x 5,05m x 2,5m		
Dimensions de la cale <u>sans</u> logement	Longueur x Largeur = 28,25m x 5m		
<u>avec</u> logement	Longueur x Largeur = 24,25m x 5m		
Déplacement lège	67 tonnes sans logement 72 tonnes avec logement		
Port en lourd (tonnes) sans logement	à 1,8m de tirant d'eau = 246 t		
	à 2,2m de tirant d'eau = 320 t		
<u>avec</u> logement	à 1,8m de tirant d'eau = 218,6 t		
	à 2,2m de tirant d'eau = 222,2 t		
Motorisation	160 CV		
Aménagements et équipements	Bras de manutention embarqué (*) + WC		
	Avec logement : + cuisine, douche, couchette		
Nombre de conteneurs sans logement	Conteneurs 7' = 48, sur 2 couches		
	Conteneurs 10'HC = 11 (dans la largeur), sur 1 couche		
<u>avec</u> logement	Conteneurs 7' = 44, sur 2 couches		
	Conteneurs 10'HC = 10 (dans la largeur), sur 1 couche		
Prix (estimatif) <u>sans</u> logement	510 000 € HT		
<u>avec</u> logement	560 000 € HT		

Tableau 12 : caractéristiques du bateau porte-conteneurs modélisé

La salle des machines est assez courte ce qui permet d'obtenir une cale de 28,25m de long (sans logement, soit 385m³).

IV.F.3. STABILITÉ DU PORTE-CONTENEURS

La stabilité du porte conteneur répond à la réglementation de « l'arrêté du 30 décembre 2008 relatif aux prescriptions techniques de sécurité applicables aux bateaux de marchandises naviguant sur les eaux intérieures », chapitre 22 « stabilité des bateaux transportant des conteneurs ». Le détail des calculs est en annexe 2.

Ces calculs de stabilité fixent les limites du bateau au niveau de son plan de chargement et déterminent si les conteneurs doivent être fixés ou non.

Les résultats de l'étude de stabilité sont donnés en annexe.

	10 pieds HC vides	10 pieds HC chargés	7 pieds vides, 1 couche	7 pieds vides, 2 couches	7 pieds pleins, 1 couche	7 pieds pleins, 2 couches
Conteneur fixé/non fixé	Non fixé	Non fixé	Non fixé	Non fixé	Non fixé	Fixé
Limites pour le plan de chargement	Aucune limite	Aucune limite	Aucune limite	Aucune limite	Aucune limite	Hauteur du Cg de conteneurs pas > à 1.7 m du fond du bateau

^{(*) =} Le bras de manutention permet de charger une voiture

IV.F.4. MODÉLISATION PC 7' ET 10' HC

On rappelle ci-après les modélisations effectuées pour un bateau avec et sans logement.

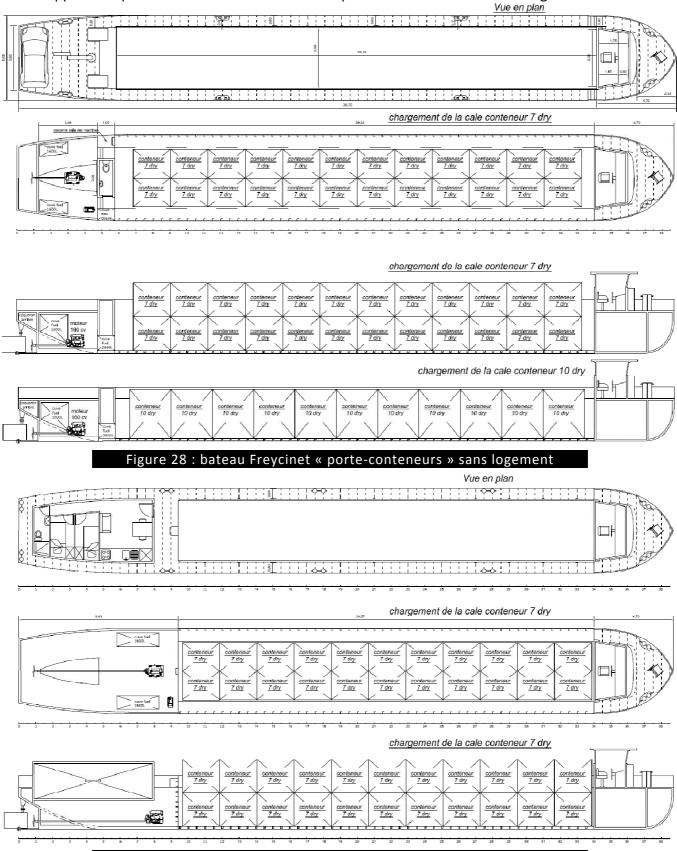


Figure 29 : bateau Freycinet « porte-conteneurs » avec logement



Figure 30: vues 3D du porte-conteneurs 7' - 10' HC

IV.F.5. LOGISTIQUE / MANUTENTION

Organisation des chargements / déchargements :

Le chargement et le déchargement du bateau et la manutention à quai des conteneurs peuvent être réalisée avec un reach stacker; il permet de charger/décharger le bateau et les camions et de déplacer les conteneurs entre le quai et une zone de stockage (prix neuf estimé entre 300 000 et 350 000 EUR).

Toutefois, ce matériel étant dimensionné pour des conteneurs plus lourds et plus encombrants (en particulier 20' et 40'), il est possible d'envisager des moyens de manutention plus en rapport avec de petits conteneurs (permettant de réduire l'investissement) ; par exemple, un chariot élévateur avec fourche pour les opérations à quai et un camion-grue pour le chargement et le déchargement du bateau ; ce camion-grue se déplaçant plus rapidement qu'un automoteur, il pourrait, pour des trajets en courte distance, être partagé entre le site d'origine et le site de destination.

Pour le chargement et le déchargement de la cale il est également possible d'utiliser un portique avec une solution du type reach stacker ou chariot pour les opérations à quai.

Maintien des conteneurs sur le bateau :

Une fois chargés, selon l'étude de stabilité (qui fixe les limites du bateau au niveau de son plan de chargement et déterminent si les conteneurs doivent être fixés ou non), les conteneurs 7' pleins doivent être fixés s'ils sont chargés sur 2 niveaux (pas nécessaire sur un seul niveau). Les 10'HC étant chargés sur un seul niveau, ils n'ont pas besoin d'être fixés.

IV.G. Détail du modèle AUTOMOTEUR PORTE-PALETTES

IV.G.1. PALETTES

En complément des caractéristiques générales, l'automoteur porte-palettes présente des spécifications qui lui sont propres. En effet, le bateau est conçu spécifiquement pour effectuer le transport de palettes, avec une manutention spécifique (comme précédemment, la cale du bateau peut aussi servir à transporter du vrac).

Palettes modélisées : EUR 800 x 1200 mm (charge d'utilisation = 1500 kg, poids propre = 25 kg). Une palette neuve coûte environ 22 €.

IV.G.2. SPÉCIFICATIONS DU BATEAU

La conception de ce porte conteneur répond à l'arrêté du 30 décembre 2008 relatif aux prescriptions techniques de sécurité applicables aux bateaux de marchandises, aux bateaux à passagers et aux engins flottants naviguant ou stationnant sur les eaux intérieures.

Le bateau porte-palette est conçu pour transporter un maximum de palette sur 3 couches. Les palettes sont chargées dans la cale au moyen de deux chariots gerbeurs, un situé sur le quai et un situé dans la cale. La palette est posée par le chariot gerbeur du quai sur une plateforme de transfert positionnée sur le plat bord du bateau, puis récupérée par le chariot gerbeur de la cale.

Grâce à un bras de manutention embarqué situé sur la plage arrière, le chariot gerbeur peut être débarqué sur n'importe quel quai, rendant le bateau entièrement autonome pour le chargement et le déchargement des palettes.

Si les palettes sont gerbables, elles peuvent s'empiler sur 3 couches. Sinon, une première couche est disposée sur le tillac, puis sur les bordés des étagères pivotantes sont déployés pour accueillir une rangée de palette supplémentaire par bordé. Ces étagères sont réalisées en aluminium pour garantir leur légèreté et sont dimensionnées pour permettre une mise en place manuelle.

Les caractéristiques du bateau sans logement uniquement sont les suivantes :

Dimensions extérieures	Longueur x Largeur x Creux = 38,7m x 5,05m x 3,2m
Dimensions de la cale	Longueur x Largeur x Creux = 28m x 5m x 3,2m
Déplacement lège	70 tonnes
Port en lourd (tonnes)	à 1,8m de tirant d'eau = 246 t
	à 2,2m de tirant d'eau = 320 t
Motorisation	160 CV
Aménagements et équipements	1 WC + bras de manutention embarqué
Nombre de palettes	Palettes gerbables = 272
	Palettes non gerbables = 144
Prix (estimatif)	535 000 € HT

Tableau 13 : caractéristiques du bateau porte-palettes modélisé

(*) = Le bras de manutention permet de charger une voiture, il peut également permettre de manutentionner un chariot gerbeur.

Le bateau a été étudié uniquement sans logement car sa vocation est la distribution de palettes en courte distance. On rappelle ci-après la modélisation effectuée, les principes de base ne variant pas par rapport aux caractéristiques principales du bateau.

IV.G.3. STABILITÉ DU PORTE-PALETTES

Lorsque la cale est chargée de 2 couches de palette, la stabilité du bateau est satisfaisante quelque soit la quantité de marchandise embarquée, à condition de placer les palettes les plus lourdes dans la première couche.

Lorsque la cale est chargée de 3 couches superposées de palette, il faut porter une attention particulière à la hauteur du centre de gravité des palettes pour conserver une stabilité acceptable.

Dans tous les cas :

- A 1.8 m d'enfoncement, la limite à ne pas dépasser pour la hauteur du centre de gravité des palettes par rapport au fond du bateau est de 2.1m.
- A 2.2 m d'enfoncement, la limite à ne pas dépasser pour la hauteur du centre de gravité des palettes par rapport au fond du bateau est de 1.75m.

IV.G.4. MODÉLISATION

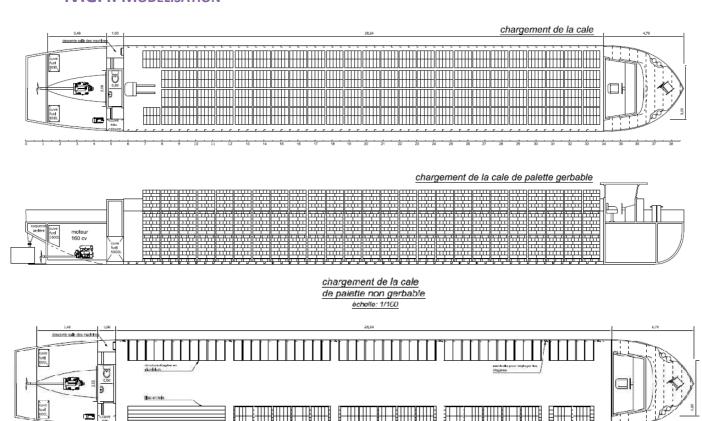


Figure 31 : bateau Freycinet « porte-palettes » sans logement

Figure 32 : vues 3D du porte-conteneurs 7' – 10' HC

IV.G.5. LOGISTIQUE / MANUTENTION

Chargements / déchargements :

Les palettes gerbables sont disposées sur 3 couches superposées. Les palettes non gerbables sont déposées sur le tillac en 1 couche + 1 couche sur des étagères repliables.

Le chargement des palettes est assuré par 2 chariots gerbeurs ; un situé sur le quai et un second situé dans la cale (la palette est positionnée sur le plat-bord du bateau par le chariot à quai et reprise par le chariot de la cale). Grâce à un bras de manutention embarqué il est possible de débarquer le chariot sur n'importe quel quai, rendant le bateau entièrement autonome pour la manutention des palettes. Le chargement en configuration « non gerbables » (2 couches) permet d'accéder à toutes les palettes et d'en décharger une seule si nécessaire (permet de décharger les palettes à plusieurs endroits).

Lorsque la cale est chargée de 2 couches de palette, la stabilité du bateau est satisfaisante quelle que soit la quantité de marchandises embarquées, à condition de placer les palettes les plus lourdes dans la première couche. Lorsque la cale est chargée de 3 couches superposées de palettes, il faut porter une attention particulière à la hauteur du centre de gravité des palettes pour conserver une stabilité acceptable.

V. Étude de scénarios « Freycinet » (évaluation du matériel et exemples d'organisation)

V.A. Objectif

Les solutions élaborées en phase 2 à partir de l'état des lieux doivent permettre de répondre à la demande de transport et de proposer des offres de services sur le réseau Freycinet qui soient compétitives (par rapport à la route). C'est cet aspect qui sera testé et validé au cours de cette 3^{ème} phase qui sera également l'occasion d'établir des préconisations pragmatiques à destination du secteur; tout du moins de recenser les conditions de mises en œuvre des solutions techniques qui permettront d'atteindre un niveau économique viable.

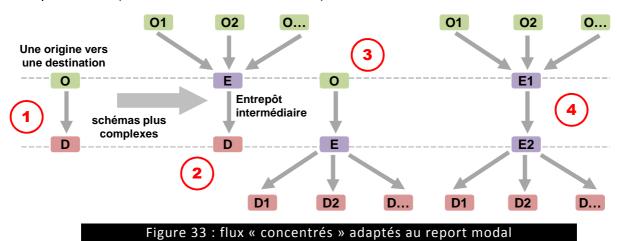
En effet, la phase 3 a pour objectif l'évaluation des solutions retenues (projets de deux automoteurs, élaborés en phase 2) et d'en tirer des conclusions quant à la possibilité de « nouvelles organisations de transport combiné par route et fleuve sur le réseau Freycinet ». Les caractéristiques des nouvelles unités Freycinet sont évaluées sur la base de 3 scénarios logistiques qui les mettent en jeu. Ces nouveaux scénarios de transport sont décrits et analysés au cours de cette phase 3. Ils seront comparés à une solution « actuelle » (100% route ou autres modes).

Enfin, cette phase sera l'occasion de conclure quant à la possibilité(ou non) de créer et de développer des services combinés de ce type, sur la base des nouvelles unités fluviales étudiées ; le cas échéant, des préconisations de mises en œuvre seront adressées.

V.B. Méthode d'élaboration des nouveaux scénarios

V.B.1. CAS ÉTUDIÉS (CONSTRUCTION DES SCÉNARIOS)

Les scénarios doivent permettre de valider l'adéquation entre les moyens (bateaux, manutention, SI...) et les exigences des services auxquels ils participent (transport de marchandises palettisées et conteneurisées) ainsi que l'intérêt des résultats économiques et environnementaux, en fonction de seuils de trafics, de différents taux de remplissage et pour différentes organisations des transports (différents schémas de transport pris en compte).


Il est donc proposé des cas pratiques qui mettent en œuvre ces unités fluviales. L'organisation des transports de bout-en-bout est présentée et analysée (transports d'approche par route selon les cas, transport fluvial, manutention, stockage intermédiaire, ...). Afin d'obtenir des résultats concrets et proches de la réalité du terrain, les scénarios sont bâtis à partir de cas réels ou d'études réalisées avec des professionnels du secteur (réadaptés).

A partir des résultats, il sera possible de généraliser les cas d'utilisation de la flotte Freycinet adaptée à de nouveaux transports et de présenter une nouvelle alternative durable au « tout route » par voie fluviale.

Les scénarios prennent en compte différents organisation du transport.

Les schémas de transport les plus courants sont présentés ci-après, mais tous ne sont pas adaptés au report modal (selon la concentration des flux) :

Le schéma 1 correspond à des trajets directs, plus souvent en longue distance (mais également possibles en courte distance).

Les trajets 2, 3 et 4 correspondent à des trajets avec passage par des points nodaux (exemples : entrepôts, quai pour transbordement, ...), le plus souvent en courte distance. Entre ces points, l'organisation du transport est similaire au schéma 1 mais avec des flux multi-clients et/ou multifournisseurs (voire des flux de plusieurs entreprises en cas de mutualisation). Les marchandises subissent des opérations sur ces points, a minima une rupture de charge avec stockage plus ou moins long et peuvent également connaître d'autres opérations logistiques, exemple être dépotées si elles sont conteneurisées pour être ensuite distribuées sur palettes (et inversement, elles peuvent être conteneurisées si elles sont ramassées sur palettes).

Dans ces schémas, le petit gabarit peut exprimer sa vocation, c'est-à-dire assurer la capillarité de l'ensemble du réseau.

A l'inverse, si le groupage de Freycinet existe sur réseau à grand gabarit, le transport fluvial au gabarit Freycinet ne s'adapte pas (ou uniquement dans certains cas particuliers) aux schémas ciaprès :

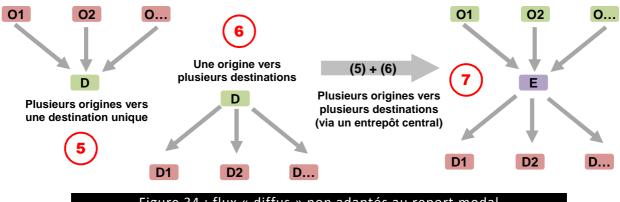


Figure 34 : flux « diffus » non adaptés au report modal

Ces schémas (5, 6 et 7), diffus, ne permettent pas de mettre en place des transports multimodaux, sauf à disposer de flux très importants (massifiés) sur un trajet particulier, entre une origine et une destination (exemple, dans le cas du schéma 5, entre les points 01 et D); on estime alors qu'on est dans le cas du schéma 1.

L'organisation du transport est également différente entre courte et longue distance.

En longue distance, les moyens de transport seront dédiés (un acteur) et correspondent à des flux massifiés (schéma 1) ; idéalement avec possibilité de retour en charge. Les services peuvent ne pas être réguliers (transport à la demande).

En courte distance, les moyens de transport pourront être utilisés sous forme de « navette » (fréquence suffisante et ligne régulière), éventuellement mutualisés si l'origine et la destination regroupent des flux de différents clients (schémas 2 à 4, les moyens peuvent être mutualisés).

Au final, les scénarios étudiés sont construit de la manière suivante :

Distance Conditionnement	COURTE DISTANCE (dont urbain)	ZONE LONGUE		
CONTENEURS 20'	Non pris en compto	Non pris en compte (limites techniques)		
CONTENEURS 7' et 10'HC	X (SCENARO 1)	X (SCENARIO 2)		
PALETTES	X (SCENARIO 3)	Non étudié: techniquement possible mais temps de navigation trop long en zone longue et meilleure rentabilité en grand gabarit		
VRAC	Non étudié mais possible en marché d'appoint (cales mixtes) pour limiter les retours à vide. Le vrac conteneurisé a été étudié (scénarios 1 et 3)			

Tableau 14 : hypothèses de construction des scénarios

(*) = dans notre étude, le transport de palettes en fluvial au gabarit Freycinet est considéré comme un transport de livraison finale, c'est-à-dire en courte distance. Dans une zone réduite, il permet de proposer une fréquence suffisante avec un investissement nettement plus réduit qu'en longue distance et il concentre des flux plus facilement qu'en longue distance.

Les scénarios ainsi construits seront étudiés à partir de cas concrets, issus d'études et projets précédents. Les données utilisées sont présentées ci-après.

V.B.2. Sources des données

Les données techniques, économiques et environnementales proviennent :

De cas réels (études menées par TL&Associés et VNF pour des chargeurs);

« Proposition de nouvelles Organisations de transport combiné par route et fleuve utilisant le réseau Freycinet »

 De l'état des lieux (phase 1), pour compléter d'éventuelles données manquantes (sur la base des données statistiques) et pour pouvoir généraliser les scénarios étudiés.

2 cas réels sont utilisés pour construire les 3 scénarios étudiés.

CAS 1, transport de déchets à courte distance

Le cas1 a permis de construire le scénario 1 et par extension le scénario 2 (avec un périmètre géographique similaire mais avec des marchandises et un conditionnement différent). Ce cas combine les projets de deux gestionnaires de déchets, d'une part la Communauté Urbaine de Strasbourg (CUS) entre d'autre part le groupe SITA, les flux étant complémentaires sur l'axe Strasbourg – Vendenheim. Ces projets pris séparément ne présentent pas d'attrait économique suffisant mais étudiés de manière conjointe et en supposant la mise en place d'une mutualisation des moyens de transport et de manutention, il est possible de d'améliorer significativement les résultats économiques. Le scénario 1 reprend ce cas.

Le scénario 3 a été élaboré sur cette même base géographique pour mettre en évidence les possibilités de mutualisation du fluvial à d'autres secteurs. Ce cas a ainsi été adapté pour la grande distribution. Dans ce cas, la mutualisation est utilisée pour remplir un bateau tous les jours et assurer un nombre suffisant de rotations (et éventuellement limiter les retours à vide). Il existe une zone d'activité commerciale importante à Vendenheim qui sera la zone cible et nous supposerons l'existence d'un entrepôt régional à Strasbourg (sur le port), approvisionné par les ports du Nord (Benelux, comme Anvers ou Rotterdam).

CAS 2, transport de pièces mécaniques et chutes de ferrailles, zone longue:

Ce cas a permis de construire le scénario 3. Ce projet mené par PSA vise à transférer vers la voie d'eau des trafics actuellement réalisés par la route et le rail. Les flux sont les suivants :

- Mulhouse Sept-Fons : 170 t de paquets de l'Emboutissage + 50 t de chutes XC de forge expédiées quotidiennement par train (avec rupture de charge à Digoin ce qui implique un pré acheminement routier), soit 220 tonnes /jour).
- Sept-Fons Mulhouse: 240 t de pièces brutes de freinage (disques, moyeux) expédiées quotidiennement par route, conditionnés en caisses métalliques. Soit 10 camions/jour (4 camions reviennent avec les caisses vides).

Il s'agit de flux équilibrés et réguliers de marchandises en longue distance. Il s'agit là d'un cas favorable au report modal.

SCENARIOS RETENUS

Périmètre	COURTE DISTANCE (dont urbain)	LONGUE DISTANCE
CONTENEURS (7' et 10'HC)	SCENARIO 1 Mutualisation des flux de 2 sociétés de gestion des déchets. Transport fluvial de déchets conteneurisés entre Strasbourg et Vendenheim (enlèvement et distribution routière pour les derniers kilomètres)	SCENARIO 3 Transport fluvial de pièces mécaniques (dans un sens) et ferrailles (dans l'autre sens), entre Sept-Fons et Mulhouse. Marchandises conteneurisées. Pas de préet post-acheminement routiers, sites directement en bord de voie d'eau
PALETTES	SCENARIO 2 (*) Livraison fluviale de marchandises palettisées en provenance des ports du Nord / BENELUX depuis le port de Strasbourg (EUROFRET) vers la zone commerciale de Vendenheim	-

Tableau 15 : scénarios retenus

La situation de référence correspond au transport routier de ces marchandises.

On estime que les origines et destinations ne sont pas modifiées d'un scénario à l'autre. De même, les quantités ne varient pas après la mise en place des nouveaux schémas.

V.B.3. Données techniques, économiques et environnementales (communes aux scénarios)

Données techniques, fluviales et routières

Les données techniques concernant les capacités de chargement sont les suivantes :

Chargement	Vrac	Conte	eneurs	Palettes	
Chargement		7'	10'HC	Palettes	
Automoteur Freycinet sans logement	400 m ³	48	11	144 ou 272 superposées	
Automoteur Freycinet avec logement	350 m ³	44 10		-	
Semi-remorque benne	50 m ³	- (*)	-	-	
Semi-remorque porte-conteneurs	-	5	4	-	
Semi-remorque tautliner	-			33 ou 66 superposées	

^{(*) =} possible mais non retenu pour les scénarios

Tableau 16 : capacités de chargement des différents types de bateaux

^(*) SCENARIO2 = scénario théorique élaboré à partir du scénario 1, mais avec des marchandises palettisées et entre une zone de stockage (entrepôts) et un une zone commerciale. Scénario théorique car les entrepôts nationaux ne sont pas le long du gabarit Freycinet.

Données économiques

Les coûts d'exploitation du transport fluvial sont les suivants :

MOY	COUT UNITAIRE	
	carburant (€/litre)	0,74€
	Lubrifiant (% de carburant)	7%
	Entretien (% de carburant)	15%
ALITOMOTELIA	Assurances	10 000 €
AUTOMOTEUR	Impôts et taxes	15 000 €
	Remplacement personnel	5 000 €
	Maintenance et travaux	10 000 €
	Salaire batelier	36 000 €

Hors frais de gestion et taxes diverses (cf. annexe)

Tableau 17: coûts d'exploitation du transport fluvial

Les coûts d'exploitation du transport routier sont les suivants :

• Dans le cas de matériel en propre :

MOY	COUT UNITAIRE	
	coût kilométrique (€/km)	0,575€
PLATEAU	coût horaire (€/h)	20,33€
	frais fixes (€ /an)	40 000 €
	coût kilométrique (€/km)	0,575 €
TAUTLINER	coût horaire (€/h)	20,33€
	frais fixes (€ /an)	40 000 €
	coût kilométrique (€/km)	0,684€
BENNE	coût horaire (€/h)	17,84€
	frais fixes (€ /an)	35 000 €

⁺ Écotaxe (environ 0,14€/km)

Tableau 18: coûts d'exploitation du transport routier

 Dans le cas de matériel sous-traité: les camions sont facturés à la journée ou à la demijournée (entre 700 et 750 €/jour). En longue distance, les trajets retours peuvent être facturés au client si le transporteur ne peut trouver de trafics (trajets à vide).

Subventions envisageables

Différentes possibilités d'aides au démarrage et à l'exploitation pour un service de transport fluvial ont été identifiées (source VNF, 30/06/2011) :

Subvention	Financement	Description		
Plan d'aides à la	VNF (14M€	Aide à la conception et à l'investissement :		
modernisation du matériel	sur la période	50% des études (max 100 000 €/opérateur)		
flottant	2008-2012)	+ 20% des investissements (max 200 000 €/bateau)		
Aides aux embranchements	VNF	Aides aux équipements pour utiliser le mode fluvial, 25% du		
fluviaux	(1M€/an)	montant HT d'investissement		
Démarrage des services		Aides au transfert modal favorisant les économies		
fluviaux	ADEME	d'énergie : 20% du surcoût d'investissement par rapport à la		
Iluviaux		route (selon les cas, jusqu'à 30%), plafonné à 1M€ HT		
Aides au démarrage de	Ministère des	Avance remboursable (prêt à taux zéro) pour l'acquisition		
nouveaux services	transports	du matériel+ subvention à l'UTI manutentionnée (environ		
combinés (MEDDEM)		15 €/UTI /rupture de charge)[1]		
Certificats d'économie d'énergie (CEE)	Géré par l'État	Financement pour un investissement contribuant aux économies d'énergie. Environ 0,3c€ /kWh économisés [2] (pour une période d'économie d'énergie de 15 à 25 ans)		

^[1] Hypothèses: conteneurs 7' et 10'HC éligibles (pas d'indication contraire).

Certains Conseils Régionaux développent leur propre système d'aides.

Il existe également des aides au niveau Européen : aide MARCO POLO attribué par l'EACI (Europe), 2€ par 500 t.km transférées de la route à un mode alternatif à la route, pendant 3 ans (démarrage du service) et TEN-T pour le financement des infrastructures ; ces aides peuvent être attribuées aux projets à dimension européenne.

Tableau 19: subventions captables pour le transport fluvial

Données environnementales

Les émissions de gaz à effet de serre (assimilées aux émissions de CO₂) sont estimées ainsi que les coûts externes.

Les émissions de CO2 sont calculées à partir de la consommation en carburant des camions et des bateaux. Le ratio permettant de convertir des litres de carburant (fuel et gasoil) en équivalent CO₂ est le suivant (« facteur d'émissions », intégrant les phases de production et de consommation du carburant) : Facteur d'émissions = 2,95 kgeqCO2/litre

Pour les coûts externes, les données utilisées sont les suivantes :

Données coûts externes transports	ROUTIER		FLUVIAL (Freycinet)
Congestion	2,50€	€/veh.km	0€	
Accidents	0,04 €	€/veh.km	0€	
Pollution atmosphérique	0,06 €	€/veh.km	6,05 €	€/barge.km
Bruit	0,01€	€/veh.km	0€	
Changement climatique	0,02 €	€/veh.km	0,56 €	€/barge.km
Amont/Aval	0,02 €	€/veh.km	0,52€	€/barge.km

Source Commission Européenne - DG TREN - 2008

Tableau 20 : coûts externes liés au transport

Ces données sont utilisées dans la description et l'évaluation des scénarios présentés ci-après.

^[2] Facteur de conversion : 1 litre de gasoil = 10,6 kWh (estimation)

V.C. Scénario 1: transport fluvial en courte distance de déchets conteneurisés (10'HC ou 7')

V.C.1. LA SITUATION DE RÉFÉRENCE

Les déchets sont transportés entre sites de traitement (en courte distance, à moins de 50 km), par la route, en camion-benne. Une fois vidées, les bennes retournent à vide à leur base pour être rechargées.

Deux chargeurs différents disposent de flux complémentaires de ce type (les tonnages sont similaires et les flux sont en sens opposés) mais ne mutualisent pas leurs moyens. Ils souhaitent pourtant transférer leurs flux de la route au fluvial.

FLUX ACTUEL	S /AN (250 jours d'exploitation /an)			
Chargeur A	Brumath > Strasbourg (centre de tri)	Corps plats / creux	35 km	4070 tonnes
	Strasbourg (centre de tri) > Hochfelden	Refus de tri DIB	47 km	40 000 tonnes
Chargeur B	Vendenheim > Strasbourg (centre de tri)	Collecte sélective	28 km	60 000 tonnes

Tableau 21 : flux de référence pour le scénario 1

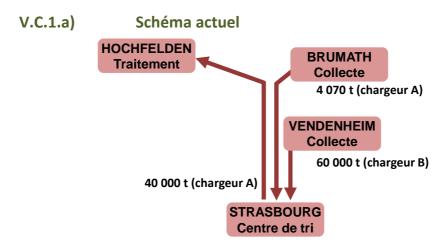


Figure 35 : schéma de référence scénario 1

Les flux gérés par le chargeur A représentent 4070 tonnes /an pour le trajet Brumath vers le centre de tri de Strasbourg et de 40 000 t/an entre ce centre de tri et le centre de traitement de Hochfelden.

Le centre de tri de Strasbourg est également utilisé par le chargeur B pour ses flux en provenance de Vendenheim de 60 000 tonnes /an.

V.C.1.b) Données de base

Caractéristiques des marchandises (densité) :

Type de déchet	Densité non compactés	Densité compactés	
Corps plats / creux	0,1684 t/m ³	0,25 t/m ³	
Collecte sélective	0,338 t/m ³	0,338 t/m ³	
Refus de tri DIB	0,25775 t/m ³	0,2625 t/m ³	

Caractéristiques des bennes (semi-remorques) :

Durée du chargement (ou déchargement)	0,50 h/benne
Tonnage maximum	25 t
Volume maximum	50 m ³
Vitesse moyenne (zone péri-urbaine + urbaine)	50 km/h
Temps de service maximum par jour (sous-traité)	9h
Consommation en carburant	42,7 litres/100km

Le chargement est réalisés par une belle (ou un grappin selon le conditionnement) ce qui permet de peser les déchets chargés au fur et à mesure.

Les camions sont sous-traités. Ils sont réservés à la journée (9h) ou à la ½ journée (ce qui permet au transporteur de réaffecter le camion chez un autre client le reste de la journée). Au cours de leur période de travail, ils réalisent des boucles entre les sites de chargement et de déchargement.

Le nombre et l'organisation des camions sont présentés ci-après :

FLUX ACTUELS /AN		Nbre de camions /jour	Boucles /camion	Amplitude/ca mion (h)
Chargeur A	Brumath > Strasbourg (centre de tri)	1	2,0	4,5
	Strasbourg (centre de tri) > Hochfelden	4	3,2	9,0
Chargeur B	Vendenheim > Strasbourg (centre de tri)	4	3,6	8,0

Les coûts liés aux transports des déchets sont évalués sur un périmètre comparable en situation cible. Seuls les éléments qui varient de la situation de référence à la situation cible sont pris en compte.

Consommation de carburant et émissions de CO2

La consommation d'une benne est de 42,7 litres/100km. La consommation totale par jour est présentée dans le tableau suivant :

Trajet	Consommation par trajet (litres)	Consommation total par jour
Brumath – Strasbourg	29,9	59,80
Vendenheim – Strasbourg	23,9	341,77
Strasbourg - Hochfelden	40,1	501,25
Consommation d	902,82 litres	
Émis	2,66 tonnes	

Pour ces trajets, la consommation annuelle de carburant représente 225 705 litres. Les émissions de CO2 équivalentes sont de 665,8 tonnes/an.

V.C.1.c) Calcul des coûts

Les coûts d'exploitation pris en compte et leurs montants sont les suivants :

TRAJET ROUTIERSOUS-TRAITES	Coût unitaire €/jour	Taux de facturation	COUT €/an
Brumath > Strasbourg (centre de tri)	750 €	100%	187 500
Strasbourg (centre de tri) > Hochfelden	750 €	100%	750 000
Vendenheim > Strasbourg (centre de tri)	750 €	100%	750 000
		TOTAL €/an	1 687 500 €
		Nbre de tonnes	14 070
		COUT €/tonne	16€

Tableau 22 : coûts d'exploitation du scénario 1 (référence)

Le coût moyen du transport (pour les deux chargeurs) ramené à la tonne est de 16 €.

V.C.1.d) Calcul des coûts externes

L'impact environnemental des scénarios est également analysé et permet de compléter l'analyse en apportant un éclairage différent.

Le nombre de véhicules.km est de 528 950 /an. Les résultats sont les suivants :

Coûts externes	MONTANT (€)
Congestion	1 322 375 €
Accidents	22 745 €
Pollution atmosphérique	30 679 €
Bruit	5 818 €
Changement climatique	8 463 €
Amont/Aval	9 891 €
TOTAL (€)/an	1 390 081 €
NBRE TONNES	104 070
COUT €/tonne	13 €

Tableau 23 : coûts externes pour le scénario 1 (référence)

Les coûts externes représentent un coût de 13 €/tonne pour la collectivité.

V.C.2. LA SITUATION CIBLE (SCÉNARIO 1)

Les deux chargeurs mettent en œuvre un schéma fluvial avec une mutualisation des moyens de transport et de manutention qui permet de maximiser le taux de chargement, de réduire les parcours à vide et de partager les coûts d'investissement.

Les déchets, apportés sur les sites de regroupement en bennes, sont conteneurisés (et préalablement compactés) pour une manutention simplifiée. Les conteneurs sont des 7' ou des 10'HC (le scénario est étudié avec ces deux types de conteneurs, un seul type par scénario).

FLUX CIBLES /AN (250 jours d'exploitation /an)		Conteneurs 7'	Conteneurs 10'HC	
Chargeur A	Corps plats / creux	4070 tonnes	3 193	1 005
	Refus de tri DIB	40 000 tonnes	29 879	9 407
Chargeur B	Collecte sélective	60 000 tonnes	34 807	10 958

Tableau 24 : flux cibles pour le scénario 1

Les conteneurs sont chargés à 90%



Figure 36 : schéma cible scénario 1

Les déchets collectés à Brumath (chargeur A) sont apportés à Vendenheim en bennes (vrac) et conteneurisés sur ce site. Les déchets directement collectés et regroupés à Vendenheim (chargeur B) sont également conteneurisés sur place. Les conteneurs (7' ou 10'HC) sont ensuite chargés sur la barge qui relie Vendenheim et le port de Strasbourg où se situe le centre de tri (via le Canal de la Marne au Rhin et le Rhin canalisé). Cette voie d'eau est au gabarit Freycinet et nécessite donc un bateau à ce gabarit pour relier ces deux sites. Dans le sens du retour, les refus de tri du centre de Strasbourg sont chargés sur le bateau, déchargés à Vendenheim et transférés par la route (en camions porte-conteneurs) à Hochfelden.

V.C.2.b) Données de base du scénario

Les données liées aux manutentions fluviales sont les suivantes :

	7'	10'HC
Nbre maximum de conteneurs /bateau (100%)	48	11
Durée de (dé)chargement /conteneur	3 min	3 min
Nbre de Reachstacker par site	1	1
Chargement + déchargement par BATEAU (100%)	4,80 h	1,10 h
Durée du travail /jour	38,4 h	13,2 h
NBRE ETP /jour (cariste)	5,5	1,9

Les données de navigation (simplifiées) sont les suivantes :

Vendenheim <> PAS	Distance (km)	Vitesse moyenne (km/h)	Durée (h)
Rhin canalisé	6,3	12	0,5
Canal Marne au Rhin	10,8	6	1,8
TOTAL	17,1	7,4	2,3
		+ écluses (6 x 10min)	1,0
		TOTAL navigation	3,3

A partir de ces données il est possible de calculer le nombre d'automoteurs à utiliser :

Besoin en bateaux	conteneurs 7'	conteneurs 10'HC
Durée /trajet (h) = navigation + manutention	8,10	4,40
DUREE d'un BOUCLE = A+R (h)	16,2	8,8
NBRE de BOUCLES /24h /bateau	1	2
Nbre conteneurs max /boucle	96	44
Besoin en capacité /jour (A+R)	304	96
NBRE DE BATEAUX	4	3
Offre capacité	384	132
Taux de chargement	79%	73%
NBRE total de BOUCLES /24h	4	6

Plusieurs équipages se relayent sur les bateaux. Le schéma « 1 automoteur = 1 marinier » n'est pas adopté dans ce scénario et des relais sont mis en place. Les distances sont inférieures à 20 km (courte distance) et le bateau peut transporter une voiture sur l'embarcation ; le marinier peut ainsi très facilement rentrer chez lui chaque jour et reprendre son service le lendemain. Les temps de services sont de 7 heures.

Ce schéma 24h/24 permet de réduire le nombre d'automoteurs nécessaires. Le scénario avec des conteneurs 10'HC permet de limiter le nombre de bateaux à 3 compte tenu des temps de chargement réduits (qu'il s'agisse de conteneurs 7' ou 10'HC les temps de chargement et déchargement sont identiques mais les 7' plus nombreux que les 10'HC).

Le calcul des taux de chargement (79% dans le cas des 7' et 73% pour les 10'HC) met en évidence de l'espace libre qui permet d'envisager de mutualiser ces moyens avec d'autres chargeurs (pour tous types de marchandises conteneurisées), notamment dans le sens Strasbourg – Vendenheim compte tenu du léger déséquilibre de flux.

Consommation de carburant et émissions de CO2 pour les trajets fluviaux

La consommation moyenne d'un automoteur est de 0,20 litres / CV.h

Cette consommation varie en fonction du type de bassin (vitesse du courant et de l'automoteur). Dans le cadre du scénario étudié, la puissance nécessaire est la suivante :

Parcours	Puissance néc	essaire (CV/h)	Consommation de carburant (L/h)	
Parcours	En charge A vide		En charge	A vide
Rhin	134	88	26,8	17,6
Canal	18	12	3,6	2,4

Les trajets sont tous en charge, seule la donnée de consommation en charge est utilisée.

Pour la partie Rhin la consommation est de 14,2 litres et pour la partie Canal la consommation est de 6,5 litres. Au total, par jour, l'automoteur consommera 166 litres de carburant dans le cas d'un transport de 7' et 248 dans le cas d'un transport de 10'HC.

Les émissions de CO2 équivalentes par /jour sont de 0,49 tonne pour les 7' et 0,73 tonne pour les 10'HC (soit respectivement 122 et 183 tonnes /an).

La partie routière (pré- et post- acheminements) est détaillée ci-après.

Pré acheminements en benne ; les caractéristiques sont les suivantes :

Durée du chargement (ou déchargement)	0,50 h/benne
Tonnage maximum	25 t
Volume maximum	50 m ³
Temps de service maximum par jour (en propre)	7h
Consommation en carburant	42,7 litres/100km

Il apparait opportun pour les sites de disposer de leur propre flotte de camions compte tenu de la quantité et de la régularité des flux.

Les temps d'un trajet A/R(dont chargement et déchargement) sont les suivants :

Trajets [1]		Distance	Vitesse moyenne	Durée d'une boucle [2]
Chargeur A	Brumath >Vendenheim	8 km	50 km/h	1,32 h
	Centre de tri de Strasbourg>port	1 km	35 km/h	1,06 h

^[1] Les déchets gérés par le chargeur B sont stockés directement sur le site de Vendenheim (disposant d'un quai fluvial), il n'y a donc pas d'approche routière.

Les moyens nécessaires sont évalués ci-après :

BASE	Poids/an (t)	Nbre de boucles /jour	Durée total (h)	Nbre de camions	Nbre d'ETP /jour (conducteur)
Vendenheim	4 070	2	2,6	1	0,4
Strasbourg	40 000	13	13,7	2	2,0

Post-acheminements en porte-conteneurs (plateaux) ; les caractéristiques sont les suivantes :

Durée du chargement (ou déchargement)	2,5 min /conteur
Nbre de conteneurs par camion	5 conteneurs 7'
Note de conteneurs par camion	4 conteneurs 10'HC
Temps de service maximum par jour (en propre)	7h
Consommation en carburant	42,7 litres/100km

Les temps d'un trajet A/R (dont chargement et déchargement) sont les suivants :

^[2] La durée d'une boucle = durée temps de route ALLER + RETOUR + durée chargement + déchargement

Traiets		Distance	Vitesse	Durée d'une boucle	
Trajets		Distance	moyenne	7'	10'HC
Chargeur A+B	Port de Strasbourg > centre de tri	20 km	50 km/h	1,22 h	1,13 h
Chargeur A	Vendenheim > Hochfelden	1 km	35 km/h	0,42 h	0,34 h

Les moyens nécessaires sont évalués ci-après :

PLATEAUX EN PROPRE (et	Conteneurs 7'		Conteneurs 10'HC		
affectation par site)	Strasbourg	Vendenheim	Strasbourg	Vendenheim	
BOUCLES/jour	31	24	12	10	
DUREE TOTALE (h)	13,2	29,2	4,1	11,3	
Nbre camions	2	4	1	2	
utilisation unitaire (h)	6,6	7,3	4,1	5,7	
NBRE ETP /jour	1,9	4,2	0,6	1,6	

Consommation de carburant et émissions de CO2 pour les trajets routiers

La consommation en carburant des poids-lourds du scénario sont les suivantes :

comi romorano	consommation	Distance (km/jour)		Consommatic	on (litres/jour)
semi-remorque	(litres/100km)	7'	10'HC	7'	10'HC
BENNE	42,7	58	58	24,8	24,8
PLATEAU	37,3	1 022	424	381,2	158,2
		Consommation /jour (litres)		406	183
		Consommation /an (litres)		101 493	45 730
		Emissions de CO2 /an (tonnes)		421,5	318,1

Préparation des marchandises sur les sites de regroupement et manutentions :

Pour leurs envois, les déchets doivent être compressés et conteneurisés (sur les sites de regroupement : Vendenheim d'une part et le port de Strasbourg d'autre part). Les conteneurs sont préparés sur un espace dédié et stockés en attendant leur chargement sur le bateau. Une fois arrivés à destination, les conteneurs sont vidés (les déchets sont déchargés) et il retourne sur la base la plus proche pour y être nettoyés et stockés en attendant d'être réutilisés. Il est donc nécessaire de gérer un stock de conteneurs vides (qui doivent également être déplacés entre bases en fonctions des besoins de chargement).

Les opérations réalisées sont regroupées dans le tableau suivant :

OPERATIONS	Détails	Productivité	Outils	Personnel
Pré acheminement	Admission des camions	0,08 h/camion	-	Agent
Compactage	sortie stock caisse vide	0,04 h/conteneur	Chariot	Cariste
Compactage + stockage	compactage déchets	0,02 h/tonne	Compacteur	Agent
+ Stockage	entrée stock caisse pleine	0,04 h/conteneur	Chariot	Cariste
Chargement fluvial	stock vers quai fluvial	0,04 h/conteneur	Chariot	Cariste
Déchargement fluvial	quai fluvial vers stock	0,04 h/conteneur	Chariot	Cariste
Post-acheminement	déstockage + chargement	0,08 h/conteneur	Chariot	Cariste
Lavaga das	retour conteneurs vides	0,04 h/conteneur	Chariot	Cariste
Lavage des conteneurs vides	lavage conteneurs	0,08 h/conteneur	Lavage	Agent
conteneurs vides	stockage conteneur	0,04 h/conteneur	Chariot	Cariste
Gestion des sites	Pilotage	7 h /jour et /site	-	Chef de site

Les chariots sont des chariots élévateurs pour charges lourdes

Le nombre de conteneurs et de tonnes traités par jour sont regroupés ci-après (utilisés pour calculer le matériel nécessaires et les ETP) :

Nbre de conteneurs et	Conteneurs 7'		Conteneurs 10'HC		
tonnages	Strasbourg	Vendenheim	Strasbourg	Vendenheim	
Conteneurs MAX /sens	152	120	48	38	
Conteneurs vides	0	32	0	10	
Total conteneurs	152	152	48	48	
Tonnes	256	160	256	160	

Les besoins en matériels et en personnel sont les suivants :

Matériale et personnel	Conteneurs 7'		Conteneurs 10'HC	
Matériels et personnel	Strasbourg	Vendenheim	Strasbourg	Vendenheim
Matériels				
Chariots élévateurs	4	4	2	2
Compacteurs	1	1	1	1
Stations de lavage	2	2	1	1
Personnel (en ETP /jour)				
Caristes	6,3	6,6	2	2,1
Agents divers	2,5	2,5	1,5	1,2
Chef de site	1	1	1	1

V.C.2.c) Calcul des coûts

Amortissements: les montants des investissements sont recensés ci-après, ainsi que les durées des amortissements et les taux des éventuelles subventions d'investissement (lissées annuellement mais qui devraient être versées au démarrage du projet).

INVESTISS	EMENT (EUR)	Scénario conteneurs 7'	Scénario conteneurs 10'HC	Prix achat UNITAIRE (€)	Durée amortiss. (années)	Taux de subvention
Fluvial	Automoteurs[1]	4	3	510 000 €	30	39% [2]
Routier	Benne	3	3	120 000 €	15	-
Routiei	Plateau	6	3	100 000 €	15	-
UTI	conteneurs 7'	669	-	2 500 €	20	20% [3]
OII	conteneurs 10'HC	-	211	3 000 €	20	20% [3]
Manutention	Reachstacker	2	2	350 000 €	15	25% [2]
et préparation	Chariot	8	4	200 000 €	15	25% [2]
conteneurs	Compacteur	2	2	60 000 €	20	20% [3]
conteneurs	station lavage	4	2	12 000 €	5	20% [3]
Aménagements	Vendenheim	1	1	1 000 000 €	50	20% [3]
portuaires	Strasbourg	1	1	3 000 000 €	50	20% [3]

^{[1] =} Barge en rotation 24h/24 en courte distance, pas de logement (mise en place de relais)

L'investissement en conteneurs a été estimé sur la base suivante : 1 jour de rotation + 1 jour de stock + 10% de marge.

Des investissements pour les sites portuaires ont été pris en compte (ils représentent environ 1 €/tonne), mais les surfaces pourraient être en location ; dans ce cas, ce poste serait reporté sur les coûts d'exploitation.

Au total, les montants des amortissements annuels sont les suivants :

Amortissement /an	Scénario 7'	Scénario 10'HC
Total hors subvention	591 897 €	414 853 €
Montant subvention	-133 223 €	-94 995 €
Montant avec subvention	458 674 €	319 858 €

Coûts d'exploitation

Les coûts du transport fluvial sont détaillés ci-après :

Taux d'emprunt = 2%/an. Hypothèse, durée d'emprunt = durée d'amortissement

^{[2] =} subvention VNF pour l'achat des bateaux (200 000 € /bateau), le taux est ramené au montant du bateau hors aides, pas de plafond appliqué pour le taux de subvention. Également : 100 000€ pour les études de conception (/projet). Pour le matériel de manutention, 20% d'aides

^{[3] =} aide ADEME, 20% du surcoût d'investissement par rapport à la route

AUTOMOTEURS	COUT	COUT TO	OTAL /an
(moyens en propre)	UNITAIRE	Scénario 7'	Scénario 10'HC
Carburant (€/litre)	0,74 €	30 636 €	45 954 €
Lubrifiant (% de carburant)	7%	2 145 €	3 217 €
Entretien (% de carburant)	15%	4 595 €	6 893 €
Assurances	10 000 €	40 000 €	30 000 €
Impôts et taxes	15 000 €	60 000 €	45 000 €
Remplacement personnel	5 000 €	20 000 €	15 000 €
Maintenance et travaux	10 000 €	40 000 €	30 000 €
Salaire batelier	36 000 €	144 000 €	108 000 €
Taxe d'accès (/accès)	36,54€	146 160 €	219 240 €
Taxe navigation (€/caisse*)	2€	152 000 €	48 000 €
Frais de gestion	5%	31 977 €	27 565 €
* = vides ou pleines	TOTAL /an	671 513 €	578 869 €

Pour l'ensemble des postes, les coûts d'exploitation sont les suivants :

Exploitation /an	Scénario 7'	Scénario 10'HC
Automoteur	671 513 €	578 869 €
Bennes	189 646 €	189 646 €
Porte-conteneurs	638 181 €	274 061 €
Matériel de manutention	1 323 600 €	428 990 €
Frais de personnel (manutention)	1 220 100 €	523 950 €
TOTAL (hors subventions)	4 043 040 €	1 995 516 €
Subvention coup de pince [1]	-2 280 000 €	-720 000 €
Subvention CEE [2]	-2 633 €	-3 748 €

^{[1] = 15€} par changement modal, hors dépotage (conteneurs vides ou pleins)

Total des coûts

Le total des coûts (amortissement + exploitation) est présenté dans le tableau ci-après et ramené à l'unité d'œuvre (conteneur, EVP, tonne) :

BUDGET	Hors subvention		Avec subvention	
BODGET	Scénario 7'	Scénario 10'HC	Scénario 7'	Scénario 10'HC
Amortissement	591 897 €	414 853 €	591 897 €	414 853 €
Exploitation	4 043 039 €	1 995 516 €	4 043 039 €	1 995 516 €
Subventions	-	ı	2 415 856 €	818 743 €
TOTAL	4 634 936 €	2 410 369 €	2 219 080 €	1 591 625 €
Nbre de conteneurs	68 000	21 500	68 000	21 500
Conversion en EVP	11 750	11 750	11 750	11 750
Nbre de tonnes	104 070	104 070	104 070	104 070
COUT €/conteneur	68€	112 €	33€	74€
COUT €/EVP	394 €	205 €	189€	135 €
COUT €/tonne	45 €	23 €	21€	15 €

Tableau 25 : total des coûts pour le scénario 1 (cible)

Le coût moyen (pour les deux chargeurs) ramené à la tonne est de 15€.

^{[2] = 0,3}c€/kWh économisés (avec 1litre gasoil = 10,6 kWh)

On note une différence importante de coût entre le schéma avec des conteneurs 7' et des conteneurs 10'HC, près du double. Cet écart s'explique par la capacité des conteneurs. L'utilisation de conteneurs 7' oblige à multiplier les manutentions ce qui augmente les temps de chargement et de déchargement et nécessite d'utiliser un bateau en plus par sens. De plus, dans ce scénario la contrainte est le volume de marchandises et non leur poids, les conteneurs 10'HC sont donc les mieux adaptés.

Par rapport au scénario de référence il est possible d'obtenir un coût proche et dans le meilleur cas ce scénario permet de transporter les déchets sans surcoût (16 €/tonne pour le scénario de référence).

V.C.2.d) Calcul des coûts externes

L'impact environnemental des scénarios est également analysé et permet de compléter l'analyse en apportant un éclairage différent.

Le nombre de véhicules.km est de 270 000 /an pour les transports de 7' et 120 500 /an pour les 10'HC. Pour la partie fluviale, le nombre de barge.km est de 34 200 /an pour les 7' et de 51 300 /an pour les 10'HC.

Les résultats sont les suivants :

Coûts externes	Scénario 7'	Scénario 10'HC
Congestion	675 000 €	301 250 €
Accidents	11 610 €	5 182 €
Pollution atmosphérique	222 570 €	317 354 €
Bruit	2 970 €	1 326 €
Changement climatique	23 472 €	30 656 €
Amont/Aval	22 833 €	28 929 €
TOTAL (€)/an	958 455 €	684 696 €
Nbre de conteneurs	68 000	21 500
Nbre EVP	11 750	11 750
Nbre Tonnes	104 070	104 070
COUT €/Conteneur	14€	32 €
COUT €/EVP	82 €	58€

Tableau 26 : coûts externes pour le scénario 1 (cible)

Les coûts externes représentent un coût de 7€ à 9€ (selon le type de conteneur), soit près de 50% en moins par rapport à la solution 100% route (13 €/tonne)

La synthèse des résultats et leur comparaison avec les autres scénarios sont présentées dans la suite du document.

V.D. Scénario 2 : transport fluvial en courte distance de marchandises générales palettisées

V.D.1. LA SITUATION DE RÉFÉRENCE

Ce scénario permet de modéliser le transport de marchandises générales en palettes. Les données géographiques du scénario précédent sont utilisées ainsi que la logique de mutualisation et de boucles.

Dans la situation de référence, une zone commerciale (par exemple la zone d'activité de Vendenheim, où sont présentes de nombreuses enseignes de la grande distribution ; il s'agit du 1^{er} pôle commercial de l'agglomération strasbourgeoise avec un CA 2010 de 374 M€) est approvisionnée par des entrepôts régionaux, voire nationaux, situés à proximité (par exemple à Strasbourg). Les transports sont effectués par la route en semi-remorques standards (tautliner).

Ces entrepôts régionaux sont alimentés notamment par les ports maritimes du Benelux (par exemple, Anvers et Rotterdam). Les marchandises palettisées arrivent en conteneurs (20' et 40') et sont dépotés à l'arrivée. Ils repartent à vide mais peuvent être rechargés à proximité. Ces mouvements ne sont pas pris en compte dans ce scénario (transport en longue distance soustraités, gérés par les compagnies maritimes).

En sens inverse, des entrepôts locaux distribuent la ville de Strasbourg (boutiques en centre-ville). Les quantités sont plus faibles que dans l'autre sens et les flux sont donc déséquilibrés.

Le nombre de jours d'exploitation est de 300 jours /an.

Ce cas est un cas théorique qui en pratique serait sans doute difficile à mettre en œuvre.

Les flux actuels sont les suivants :

FLUX ACTUELS /AN (300 jours d'exploitation /an)		Tonnes /an	Palettes /an
Stockage port de Strasbourg > Distribution ZA Vendenheim	25 km	39 375 tonnes	78 750
Stockage ZA Vendenheim > Distribution urbaine Strasbourg	25 km	19 688 tonnes	39 375

Tableau 27 : flux de référence pour le scénario 2

Ces quantités sont évaluées à partir de la surface de la zone de Vendenheim. Celle-ci est d'environ 80 ha ce qui représente une surface commerciale d'environ 100 000 m². Avec un ratio de 131 tonnes par jour et pour 10 000 m² d'entrepôts, le tonnage journalier reçu est de 1 313 tonnes /jour. Les palettes de 80 x 120 (non gerbables) utilisées pour le transport de bien de grande consommation (marchandises générales) sont chargées d'environ 500 kg de marchandises. Leur nombre est ainsi de 2 625 palettes par jour. On estime un taux transféré au fluvial de 10% des flux avec un flux retour de 50% du flux aller. Cela représente un total annuel de 78 750 palettes et 39 375 tonnes de marchandises dans le sens Strasbourg – Vendenheim et en sens inverse, pour la distribution de Strasbourg, 39 375 palettes et 19 688 tonnes /an.

Figure 37 : schéma de référence scénario 2

Pour simplifier l'étude, les marchandises partent d'un seul entrepôt régional situé près de zone portuaire de Strasbourg, dans un rayon de 22 km de Vendenheim. Cette hypothèse ne modifie pas les résultats économiques et environnementaux de ce scénario.

V.D.1.b) Données de base du scénario

Les transports entre Strasbourg et Vendenheim, ainsi que ceux en sens inverse, sont réalisés en semi-remorques tautliner. Les données de chargements sont les suivantes :

Nbre de palettes /camion	33
Taux de chargement	80%
Durée du chargement /palette (idem déchargement)	0,033 h
Durée total d'un chargement	0,88 h
Nbre de clients par tournée [1]	3
Temps moyen chez un client	+ 5 min
Vitesse moyenne	60 km/h
Consommation	37,9 litres/100km

[1] = Pour les flux à destination de Vendenheim, il s'agit de chargements complets (1 camion = 1 destination). Pour les la distribution urbaine de Strasbourg, des tournées de livraison sont organisées (avec par exemple 3 clients par chargement).

Trajet	temps de route ALLER (h)	temps de route RETOUR (h)	Manutentions (h)	DUREE (A/R)	DUREE /JOUR
Strasbourg > Vendenheim	0,42	0,42	1,93	2,76	27,44
Vendenheim > Strasbourg	0,42	0,42	2,34	3,18	15,79

Les camions rentrent à vide, pas d'organisation avec rechargement à proximité.

Le temps de service maximum par jour et par camion est de 9 heures (camions sous-traités).

ORIGINE	BOUCLES /jour	Nbre de camions /jour	BOUCLES /camion	Amplitude par camion (h)	facturation
Strasbourg > Vendenheim	10,0	4	2,5	6,86	100%
Vendenheim > Strasbourg	5,0	2	2,5	7,90	100%

Ainsi, 6 camions /jour approvisionnement la zone de Vendenheim et la ville de Strasbourg (respectivement 4 camions /jour et 2 camions /jour). La facturation est à 100% pour chacun des poids-lourds compte tenu de la durée d'un trajet (temps de route avec les temps de chargement et de déchargement).

La consommation de carburant par jour est la suivante :

Trajet	Consommation /jour (litres)
Strasbourg > Vendenheim	190
Vendenheim > Strasbourg	95
TOTAL (litres /jour)	285

Les émissions de CO2 équivalentes représentent 0,84 tonnes /jour, soit 252 tonnes /an

Les coûts liés aux transports des marchandises sont évalués sur un périmètre comparable en situation cible. Seuls les éléments qui varient de la situation de référence à la situation cible sont pris en compte (ainsi les manutentions de chargement et de déchargement des camions ne sont pas comptabilisées mais les durées sont prises en compte).

V.D.1.c) Calcul des coûts

Les coûts d'exploitation pris en compte et leurs montants sont les suivants :

TRAJET ROUTIERSOUS-TRAITES	Coût unitaire /jour	Taux de facturation	COUT €/an
Strasbourg > Vendenheim	750€	100%	900 000
Vendenheim > Strasbourg	750€	100%	450 000
(l'écotaxe est prise en compte)		TOTAL /an	1 350 000 €
		Nbre de tonnes	59 063
		COUT €/tonne	23 €

Tableau 28 : coûts d'exploitation pour le scénario 2 (référence)

Le coût moyen ramené à la tonne est de 23€. Par palette cela représente un peu plus de 11 €.

V.D.1.d) Calcul des coûts externes

L'impact environnemental des scénarios est également analysé et permet de compléter l'analyse en apportant un éclairage différent. Les données utilisées sont identiques à celles du scénario 1 (Commission Européenne - DG TREN – 2008).

Le nombre de véhicules.km est de 112 500 /an. Les résultats sont les suivants :

Coûts externes	MONTANT (€)
Congestion	281 250 €
Accidents	4 838 €
Pollution atmosphérique	6 525 €
Bruit	1 238 €
Changement climatique	1 800 €
Amont/Aval	2 104 €
TOTAL (€)/an	297 754 €
NBRE TONNES	59 063
COUT €/tonne	5€

Tableau 29 : coûts externes pour le scénario 2 (référence)

Les coûts externes représentent un coût de 5 €/tonne pour la collectivité.

V.D.2. LA SITUATION CIBLE (SCÉNARIO 2)

Les transports étudiés entre Strasbourg et Vendenheim, initialement opérés par la route, sont reportés au fluvial sur des automoteurs adaptés au transport de palettes. En particulier, des équipements de manutention sont embarqués sur le bateau pour faciliter les opérations de chargements et de déchargement ; il n'y a alors pas d'investissements important à réaliser pour des engins de manutention et le bateau est autonome (il lui suffit d'avoir accès à un quai).

De la même manière que précédemment, des conteneurs arrivent des ports du Nord (Anvers, Rotterdam, ...) et ils sont dépotés sur un entrepôt central (à Strasbourg, idéalement sur la zone portuaire pour limiter les pré- et post- acheminements) avant d'approvisionner la zone commerciale de Vendenheim. Les flux en sens inverse, pour livrer Strasbourg, utilisent également les navettes fluviales.

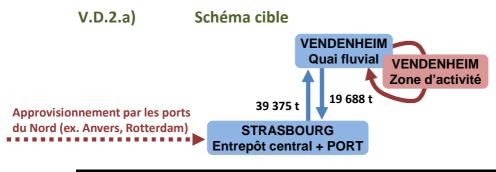


Figure 38 : schéma cible scénario 2

L'entrepôt central situé sur le port de Strasbourg est partagé entre les différentes enseignes. Cette organisation permet de réduire les trajets d'approche.

Trajet	TONNES /AN	PALETTES /AN	TONNES /JOUR	PALETTES /JOUR
Strasbourg > Vendenheim	39 375	78 750	131	263
Vendenheim > Strasbourg	19 688	39 375	66	131

Le transport de palettes vides n'est pas modélisé (marginal).

Tableau 30 : flux cibles pour le scénario 2

V.D.2.b) Données de base du scénario

Les données liées aux manutentions fluviales sont les suivantes :

Chaque bateau peut embarquer 144 palettes non gerbables.

2 chariots élévateurs sont transportés par chacun des bateaux (intégrés au coût d'investissement). Ils permettent de décharger les palettes (un chariot dans la cale et un chariot à quai, les palettes étant transmises d'un chariot à l'autre).

Le chargement d'une palette dure 2 minutes (idem pour le déchargement). Le chargement complet d'un bateau dure près de 3,5h. Il faut donc près de 7h pour décharger puis recharger un bateau.

Durée de manutention (h)	
Chargement + déchargement d'un bateau	7h
Durée cumulée du travail des caristes /jour pour les 2 sites	52,5 h
NBRE ETP /jour	7,5

Les données de navigation (simplifiées) sont les suivantes :

Vendenheim <> PAS	Distance (km)	Vitesse moyenne (km/h)	Durée (h)
Rhin canalisé	6,3	12	0,5
Canal Marne au Rhin	10,8	6	1,8
TOTAL	17,1	7,4	2,3
		+ écluses (6 x 10min)	1,0
		TOTAL navigation	3,3

A partir de ces données il est possible de calculer le nombre d'automoteurs à utiliser :

ESTIMATION NBRE DE BATEAUX				
Durée trajet (h) = navigation + chargement + déchargement	9,86			
Places disponibles	288			
Besoin capacité	394			
Nbre de bateaux	2			
BOUCLES /bateau /24h	1			
TOTAL BOUCLES /24h	2			
Taux de chargement moyen	68%			

Chaque bateau ne réalise qu'une boucle par jour, étalée sur 24h. Idéalement, le marinier change de bateau entre l'aller et le retour (il amène un bateau et repart avec l'autre ; un autre marinier réalise la boucle en sens inverse). Le nombre de bateaux est conditionné essentiellement par les durées des manutentions.

Le taux de chargement moyen est de 68%, avec 91%dans le sens Strasbourg – Vendenheim et 46% en sens inverse.

Le scénario 1 présentait un léger déséquilibre en sens inverse. Ainsi, il pourrait être intéressant de partager ces ressources (et de mixer le transport de conteneurs et de palettes) ce qui permettrait de réduire les coûts. Ce scénario, mixant les flux « conteneurs » et « palettes » (et des marchandises différentes) n'est pas directement étudié; toutefois il est évalué à travers la variation des taux de chargement (test de sensibilité).

Consommation de carburant et émissions de CO2 pour les trajets fluviaux

La consommation moyenne d'un automoteur est de 0,20 litres/CV.h

Cette consommation varie en fonction du type de bassin (vitesse du courant et de l'automoteur). Dans le cadre du scénario étudié, la puissance nécessaire est la suivante :

Parcours Puissance nécessaire (CV/h)	Consommation de carburant (L/h)
--------------------------------------	---------------------------------

	En charge	A vide	En charge	A vide
Rhin	134	88	26,8	17,6
Canal	18	12	3,6	2,4

Les trajets sont tous en charge, seule la donnée de consommation en charge est utilisée.

Par trajet, pour la partie Rhin la consommation est de 14,2 litres et pour la partie Canal la consommation est de 6,5 litres. Au total, sur une boucle (aller + retour) l'automoteur consommera 83 litres de carburant. Les émissions de CO2 équivalentes par trajet A/R sont de 0,24 tonnes (soit 73 tonnes/an).

La partie routière (pré- et post- acheminements) est détaillée ci-après :

Les préacheminements ne sont pas comptabilisés. En effet, pour optimiser les coûts nous supposons que l'entrepôt central est installé en bord à quai. Il y donc des manutentions (en chariot élévateur) entre l'entrepôt et le quai qu'il faut prendre en compte mais nous ne comptabilisons pas de transport d'approche par la route (les conteneurs sont apportés directement sur le site puis dépotés, comme dans la situation initiale; seul l'entrepôt change, il est nécessaire qu'il soit en bord de voie d'eau pour conserver une pertinence économique).

Post-acheminements en semi-remorques standards (tautliner) ; les caractéristiques sont les suivantes :

NBRE DE PALETTES /CAMION	33
Durée du chargement /palette (idem déchargement)	2 min
Durée d'un chargement (h)	1,10 h
Nbre de clients par tournée	3
Temps moyen /client	+ 5 min
Consommation en carburant	37,9 litres/100km
Temps de service maximum par jour (en propre)	7 h

Il apparait opportun pour les sites de disposer de leur propre flotte de camions compte tenu de la quantité et de la régularité des flux.

Les temps d'un trajet A/R (dont chargement et déchargement) sont les suivants :

Trajet	Distance /boucle	Vitesse	Durée d'une boucle	BOUCLES /jour	DUREE /jour
Quai fluvial Vendenheim > entrepôts de la Gde distribution	4 km	25 km/h	3,16 h	4	12,64 h

Boucles de distribution de palettes aux différentes enseignes

Les moyens nécessaires sont les suivants

TAUTLINER (en propre)		
Nbre de camions	2	
Utilisation unitaire	6,3 h	
NBRE ETP /jour	1,8	

Consommation de carburant et émissions de CO2 pour les trajets routiers

La consommation en carburant des poids-lourds du scénario sont les suivantes :

semi-remorque	consommation	Distance	Consommation
	(litres/100km)	(km/jour)	(litres/jour)
TAUTLINER	37,9	16	6,1

Par an, la consommation de carburant est de 1 819 litres, ce qui correspond à des émissions de 5,4 tonnes de CO2.

Manutention des marchandises sur les sites de Strasbourg et de Vendenheim :

Sur le port de Strasbourg, les palettes sont sorties de l'entrepôt et approchées sur le quai de chargement (idem au scénario de référence, non modélisé donc). Elles sont ensuite chargées sur le bateau. Arrivées à Vendenheim, elles sont chargées directement dans la semi-remorque qui va réaliser des rotations entre les différentes enseignes de la zone commerciale. 33 palettes peuvent être chargées au maximum dans une semi-remorque, les autres palettes restent donc à quai (ou sur l'automoteur qui sera déchargé au fur et à mesure), sous la surveillance du chef de site. Une zone clôturée doit être prévue pour simplifier le gardiennage. En sens inverse, un camions enlève les marchandises dans les entrepôts de la grande distribution et les portent sur le quai de chargement. La barge à quai est alors chargée. Elle sera déchargée à Strasbourg (sur le même site que pour l'envoi des marchandises) et les camions seront directement chargés pour livrer Strasbourg. Les palettes en attente de chargement resteront à quai sous surveillance (de la même manière qu'à Vendenheim).

Les opérations réalisées sont regroupées dans le tableau suivant :

OPERATIONS	Détails	Productivité	Outils	Personnel
Post-acheminement	Chargement + déchargement camions	0,03 h/palette	Chariot élévateur	Cariste
Gestion et surveillance	gestion des sites	7 h/jour /site	-	Chef de site

Le nombre de palettes et de tonnes traités par jour sont regroupés ci-après (utilisés pour calculer le matériel nécessaire et les ETP) :

NBRE DE PALETTES		TONNES
Strasbourg > Vendenheim	263	131
Vendenheim > Strasbourg	131	66
Total palettes	394	197

Les besoins en matériel et en personnel sont les suivants :

Matériels et personnel	Manutention à quai	Fluviale [2]	TOTAL	
Matériels				
Chariots élévateurs	2 [1]	4	6	
Personnel (ETP /jour)				
Caristes	1,88	7,50	9,38	
Chef de site	2 (2 x 1 ETP/site)	-	2,00	

[1] = ne sont comptabilisés que ceux pour Vendenheim (isopérimètre par rapport au scénario de référence)

^{[2] =} cf. manutentions fluviales

V.D.2.c) Calcul des coûts

Amortissements: les montants des investissements sont recensés ci-après, ainsi que les durées des amortissements et les taux des éventuelles subventions d'investissement (lissées annuellement mais qui devraient être versées au démarrage du projet).

INVESTISSE	MENT (EUR)	Unités	Prix achat unitaire (€)	Durée amortiss. (années)	Taux de subvention
Fluvial	Automoteurs	2	535 000 € [1]	30	37% [2]
Routier	Tautliner	2	105 000 €	15	1
Manutention	Chariot élévateur	2 [3]	25 000 €	5	25% [2]
Aménagements	STRASBOURG	1 [4]	22 500 €	1	20% [5]
portuaires	VENDENHEIM	1 [4]	22 500 €	1	20% [5]

- [1] = Barge en rotation 24h/24 en courte distance, pas de logement (mise en place de relais)
- [2] = Subvention VNF pour l'achat des bateaux (200 000 € /bateau), le taux est ramené au montant du bateau hors aides, pas de plafond appliqué pour le taux de subvention. Également : 100 000€ pour les études de conception (/projet). Pour le matériel de manutention, 20% d'aides
- [3] = 8 au total mais 2 par bateaux (soit 4) déjà comptabilisés et 2 à Strasbourg non comptabilisés pour être à isopérimètre par rapport au scénario de référence
- [4] = espaces portuaires en location (comptabilisés en amortissement), 15€ /m²/an pour 1500m²
- [5] = aide ADEME, 20% du surcoût d'investissement par rapport à la route

Taux d'emprunt = 2%/an. Hypothèse, durée d'emprunt = durée d'amortissement

Au total, les montants des amortissements annuels sont les suivants (hypothèses : taux 2% /an, durée de l'amortissement = durée du financement) :

Amortissement /an	MONTANTS
Total hors subvention	120 627 €
Montant subvention	-33 025 €
Montant avec subvention	87 601 €

Coûts d'exploitation : les coûts d'exploitation pour le fluvial sont répartis de la même manière que dans le scénario 1 (ils ne sont pas représentés ici, cf. sources des données et annexes). Pour l'ensemble des postes du scénario, les coûts d'exploitation, subdivisés par grand poste, sont les suivants :

Exploitation /an	MONTANTS
Automoteur	276 890 €
Tautliner	160 523 €
Matériel de manutention	590 625 €
Frais de personnel	702 450 €
TOTAL (hors subventions)	1 730 489 €
Subventions (CEE)	-1 871 €

Pas de subvention d'exploitation à l'UTI (actuellement uniquement pour les conteneurs) Subvention liée aux certificats d'économie d'énergie (CEE) avec 0,3c€/kWh et 1L gasoil= 10,6kWh

Total des coûts

Le total des coûts (amortissement et exploitation) est présenté dans le tableau ci-après et ramené à l'unité d'œuvre (palette, EVP, tonne) :

BUDGET	Hors subvention	Avec subvention
Amortissement	120 627 €	120 627 €
Exploitation	1 730 489 €	1 730 489 €
Subventions	1	-34 896 €
TOTAL	1 851 115 €	1 816 219 €
Nbre de palettes	118 125	118 125
Conversion en EVP	9 923	9 923
Nbre de tonnes	59 063	59 063
COUT €/palette	16 €	15 €
COUT €/EVP	187 €	183 €
COUT €/tonne	31 €	31 €

Tableau 31 : total des coûts pour le scénario 2 (cible)

Le coût moyen ramené à la tonne est de 31€ (contre 23 €/tonne pour la route).

Le coût est supérieur de +35% par rapport à celui de la route (+8€/tonne) ce qui semble compromettre sa viabilité. De plus, cette situation reste virtuelle pour l'instant (pour des flux importants) car les grands entrepôts régionaux (ou nationaux) ne sont pas positionnés en bord de voie d'eau pour la distribution (ceux qui ont fait le choix d'être en bord de voie d'eau s'intègrent dans un schéma en longue distance de livraison fluvial des conteneurs depuis les grands ports maritimes).

Ainsi, ce scénario reste très hypothétique. Il serait intéressant de combiner ces flux à un autre schéma de mutualisation déjà existant (du type de celui présenté au cours de scénario 1) afin de pouvoir proposer aux chargeurs un transport proche du coût marginal. Les palettes pourraient être transportées hors des conteneurs, dans l'espace restant libre, ou conteneurisées (3 palettes EUR 1,2m x 0,8m au sol dans un conteneur 7' ou 5 palettes dans un conteneur 10'HC).

V.D.2.d) Calcul des coûts externes

L'impact environnemental des scénarios est également analysé et permet de compléter l'analyse en apportant un éclairage différent. Les données utilisées sont identiques à celles du scénario 1 (Source Commission Européenne - DG TREN – 2008).

Les résultats sont les suivants (avec 4800 veh.km /an et 20520 barges.km /an) :

Coûts externes	MONTANT
Congestion	12 000 €
Accidents	206 €
Pollution atmosphérique	124 424 €
Bruit	53€
Changement climatique	11 568 €
Amont/Aval	10 760 €
TOTAL (€)/an	159 012 €
Nbre de palettes	118 125
Allene EVD	
Nbre EVP	9 923
Nbre Tonnes	9 923 59 063
Nbre Tonnes	59 063

Tableau 32 : coûts externes pour le scénario 2 (cible)

Les coûts externes représentent un coût de 3€ /tonne pour ce schéma multimodal (contre 5€ /tonne pour le schéma 100% route).

La synthèse des résultats et leur comparaison avec les autres scénarios sont présentées dans la suite du document.

V.E. Scénario 3: transport fluvial en zone longue de métaux conteneurisés (10'HC ou 7')

V.E.1. LA SITUATION DE RÉFÉRENCE

Ce scénario permet de modéliser des transports intra régionaux (zone longue). Il s'agit du transport de pièces mécaniques de Sept-Fons à Mulhouse et de chutes de ferrailles dans l'autre sens (Mulhouse – Sept-Fons).

Paquets (compressés)

Chutes de ferrailles XC

Tambours (pièces mécaniques)

Figure 39 : marchandises transportées dans le scénario 3

Les flux sont équilibrés (240t dans un sens et 220t dans l'autre sens) mais les moyens utilisés ne sont pas organisés en boucles, multipliant alors les parcours à vide (sauf s'ils retrouvent un chargement pour le retour). Les pièces mécaniques sont transportées dans des semi-remorques standards en caisses métalliques et les chutes de ferrailles sont transportées en vrac dans des camions-bennes (dans le scénario initial, ce transport était réalisé par train mais a été arrêté, par mesure de simplification nous ne modélisons que des transports routiers pour cette situation de référence).

Les flux actuels sont les suivants :

FLUX ACTUELS /AN (300 jours d'exploitation /an)		Tonnes /an	Tonnes /jour
Sept-Fons > Mulhouse (transport de pièces mécaniques)	375 km	52 800	240
Mulhouse > Sept-fons (transport de chutes métalliques)	375 km	48 400	220

Tableau 33 : flux de référence pour le scénario 3

Ce scénario issu d'un cas réel est toutefois un cas « idéal » et les résultats devront donc être nuancés : les flux sont équilibrés, les sites sont en bord de voie d'eau et il n'existe pas de contrainte de délai (à l'inverse, la durée du transport permet une maturation des pièces et permet donc de réduire l'espace de stockage sur les sites alors reporté sur les bateaux).

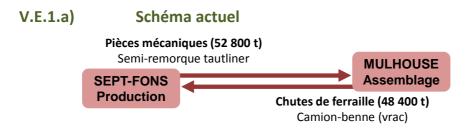


Figure 40 : schéma de référence scénario 3

V.E.1.b) Données de base du scénario

Les flux de Sept-Fons vers Mulhouse, 52 800 tonnes /an, sont conditionnés en caisses métalliques qui peuvent être transportées en semi-remorques du type Tautliner; 16 caisses pleines sont chargées par camion et 40 vides (pour le retour). L'usine de production des pièces mécaniques livre 160 caisses par jour (d'un poids moyen de 1,5 t). Une caisse est chargée en 2,5 minutes.

On considère que pour ces poids-lourds il n'y a pas de trajet à vide facturé par le prestataire. En effet, ces remorques standard doivent pouvoir trouver facilement des trafics retour (éventuellement avec un contrat de prestation annuel).

Dans l'autre sens, pour le transport des chutes de ferrailles, ce sont des bennes qui sont utilisées. Elles peuvent transporter au maximum 25 tonnes pour un volume de 50m³. Une benne est chargée en 30 minutes (idem pour le déchargement). Pour ce type de remorques il est moins évident de retrouver du fret retour, ainsi 50% des trajets sont considérés à vide (et facturés par le prestataire).

Organisation des transports routiers

Parcours	Distance aller (km)	Distance Retour (km)	Vitesse Moyenne (km/h)	Temps de route (h)	Temps manut. (h) [2]	DUREE d'un trajet
SEPT-FONS>MULHOUSE (tautliner)	375	-	85	4,41	0,67	5,08
Retour SEPT-FONS > MULHOUSE [1]	-	375	85	4,41	0,67	5,08
MULHOUSE>SEPT-FONS (bennes)	375	187,5	85	6,62	1,00	7,62

^{[1] = 4} Tautliner rentrent avec les conteneurs vides

Le nombre des camions est le suivant (pour un temps de service de 9 h/jour, moyen sous-traités) :

Parcours	Nbre de jours	Nbre de camions /jour	Trajet /camion /jour	Facturation
SEPT-FONS>MULHOUSE (tautliner)	0,56	10	1	100%
Retour SEPT-FONS > MULHOUSE	0,56	4	1	100%
MULHOUSE>SEPT-FONS (bennes)	0,85	9	1	127%

Les 4 Tautliner pour le trajet retour rentrent avec les conteneurs vides.

Les trajets retour à vide ne sont comptabilisés que pour les bennes (50%). Toutefois, les camions étant occupés plus d'une ½ journée ils sont facturés pour la journée entière.

Manutentions (chargements et déchargements)

Les manutentions sont prises en compte lorsqu'elles diffèrent entre la situation de référence et la situation cible. Le personnel nécessaire est présenté ci-après :

^{[2] =} le temps de manutention est également utilisé pour calculer le besoin en caristes

Site	CARISTES (ETP/jour)	CHEF DE SITE (ETP/jour)
SEPT-FONS	0,95	1
MULHOUSE	1,67	1
TOTAL	2,62	2,00

Le temps de travail par ETP est de 7 h/jour.

Consommation de carburant et émissions de CO2

Consommation TAUTLINER	37,9 litres /100km
Consommation BENNES	42,7 litres /100km

Parcours	CONSOMMATION (litres)	CONSO /JOUR
SEPT-FONS>MULHOUSE (tautliner)	142,1	1421
Retour SEPT-FONS > MULHOUSE	142,1	568,4
MULHOUSE>SEPT-FONS (bennes)	240,2	2161,8
	Consommation /jour	4151 litres
	Emissions de CO2 /jour	9 tonnes

V.E.1.c) Calcul des coûts

Les coûts d'exploitation pris en compte et leurs montants sont les suivants :

COUTS D'EXPLOITATION	Coût unitaire	Unité d'œuvre	COUT €/an
Trajets routiers sous traités			
SEPT-FONS>MULHOUSE (tautliner)	700 €/jour	100%	1 540 000
Retour SEPT-FONS > MULHOUSE	700 €/jour	100%	616 000
MULHOUSE>SEPT-FONS (bennes)	700 €/jour	127%	1 759 676
		TOTAL	3 915 676 €
Frais de personnel sur sites			
Caristes	196 €/ETP	2,62 ETP/jour	112 933 €
Chef de site	252 €/ETP	2,00 ETP/jour	110 880 €
		TOTAL	223 813 €
·	_	TOTAL €/an	4 139 490
		Nbre de tonnes	101 200
		COUT €/tonne	41 €

Tableau 34 : coûts d'exploitation pour le scénario 3 (référence)

Le coût moyen ramené à la tonne est de 41 €.

V.E.1.d) Calcul des coûts externes

L'impact environnemental des scénarios est également analysé et permet de compléter l'analyse en apportant un éclairage différent. Les données utilisées sont identiques à celles des scénarios précédents (Commission Européenne - DG TREN – 2008).

Le nombre de véhicules.km est de 1 938 750/an. Les résultats sont les suivants :

Coûts externes	MONTANT (€)
Congestion	5 671 875 €
Accidents	97 556 €
Pollution atmosphérique	131 588 €
Bruit	24 956 €
Changement climatique	36 300 €
Amont/Aval	42 426 €
TOTAL (€)/an	6 004 701 €
NBRE TONNES	101 200
COUT €/tonne	59€

Tableau 35 : coûts externes pour le scénario 3 (référence)

Les coûts externes représentent un coût de 51 €/tonne pour la collectivité.


V.E.2. LA SITUATION CIBLE (SCÉNARIO 3)

Le chargeur met en œuvre un schéma de transport fluvial pour relier les deux sites. Les flux étant proches de l'équilibre, il n'est pas nécessaire de rechercher une mutualisation des moyens ; une organisation dédiée est mise en place.

La distance entre les deux sites étant importante (420 km fluvial), il est nécessaire de disposer d'un réseau fluvial fiable et bien entretenu. Des aménagements pourraient être à prévoir comme par exemple les horaires d'ouvertures des écluses (très nombreuses sur le parcours), de nouveaux dragages devront être réalisés pour garantir l'enfoncement (et le niveau des biefs devra être contrôlé), les faucardages réalisés régulièrement, etc. Le service doit pouvoir être régulier (220 jours d'exploitation par an) et sans rupture.

Trajets	Type de marchandises	Tonnage annuel	Nombre de 7' (/an)	Nombre de 10'HC (/an)
Sept-Fons > Mulhouse	pièces mécaniques	52 800 t	6 380	2 200
Mulhouse > Sept-Fons	chutes de ferrailles	48 400 t	5 849	2 017

Tableau 36 : flux cibles pour le scénario 3

Le site de production basé à Sept-Fons et l'usine d'assemblage de Mulhouse ont des accès directs et privatifs à la voie d'eau ce qui simplifie l'exploitation (pas de traversée de route public, gardiennage facilité, etc.) et réduit très significativement les parcours de pré- et post-acheminements pour amener les marchandises des stocks aux quais de chargement fluvial.

Les marchandises sont transportées en conteneurs 7' ou 10'HC ce qui simplifie les manutentions (et évite des retours de conteneurs vide).

V.E.2.b) Données de base du scénario

Les données liées aux manutentions fluviales sont les suivantes :

Trajet	Tonnage /jour	Nombre de 7'	Nombre de 10'HC
Sept-Fons – Mulhouse	240	29	10
Mulhouse – Sept-Fons	220	27	9
TOTAL	460	56	19

En longue distance, les bateaux disposent d'un logement à bord (la mise en place de relais présente de trop nombreuses contraintes et il est donc préférable de rester dans une organisation « classique » du transport fluvial). La capacité est légèrement réduite par rapport à un bateau sans logement (-4 conteneurs 7' et -1 conteneur 10'HC):

Bateau AVEC logement	Nbre 7' par bateau	Nbre 10'HC par bateau
Chargement par bateau	44	10

Un conteneur est chargé (ou déchargé) en 3 minutes. Il n'est pas nécessaire de disposer d'un grand nombre de matériels de manutention ; un reachstacker par site est suffisant :

Nbre de Reachstacker	Pour les 7'	Pour les 10'HC
Nbre de Reachstacker par site	1	1
NBRE Reachstacker au total	2	2
Chargement + déchargement d'un bateau (h)	2,90	1,00
Durée totale d'utilisation (h) /jour	5,8	2,0
NBRE ETP /jour	0,90	0,30

Le nombre de conteneurs qu'il convient d'acquérir pour le scénario est fonction du nombre de conteneurs en circulation + 1 jour de stock + 5% de marge. Il est donc nécessaire de disposer de 731 conteneurs 7' ou de 252 conteneurs 10'HC.

Les données de navigation (simplifiées) sont les suivantes :

TRAJET FLUVIAL [1]	Distance (km)	Vitesse moyenne (km/h)	Durée (h)
Rhin / Saône	80	12,	6,7 h
Canal	340	6	56,7 h
TOTAL	420	6,6	63,3 h
	+ ECLUSES (0,17 h /écluse x	31,3 h	
	Durée total du parcours	94,7 h	

[1] = voies d'eau empruntées, Canal du Rhône au Rhin, La Saône, Canal du centre, Canal Latéral à la Loire

Il faut environ 95 heures pour relier Mulhouse et Sept-Fons, soit 11 jours de navigation pour une amplitude de 9 heures de travail par jour.

Plus précisément, l'étude précise du parcours dans le temps montre qu'il faut 10 jours l'été et 12 jours l'hiver; dans le cadre de cette étude nous retenons 11 jours mais pour la mise en exploitation de ce schéma il faudra prévoir de réserver des automoteurs supplémentaires pour la période d'hivers (moyens en propre ou sous-traités).

A partir de ces données, il est possible de calculer le nombre d'automoteurs à utiliser :

Besoin en bateaux	conteneurs 7'	conteneurs 10'HC
Besoin en capacité maximum par trajet	29	10
Capacité d'un bateau	44	10

Un bateau par jour est suffisant. Le nombre de bateau est donc déterminé par la durée du voyage. Il est ici de 11 jours par sens ; il faut donc prévoir 22 bateaux.

Consommation de carburant et émissions de CO2 pour les trajets fluviaux

La consommation moyenne d'un automoteur est de 0,20 litres/CV.h

Cette consommation varie en fonction du type de bassin (vitesse du courant et de l'automoteur). Dans le cadre du scénario étudié, la puissance nécessaire est la suivante :

Помосимо	Puissance nécessaire (CV/h)		Consommation de carburant (L/h)	
Parcours	En charge	A vide	En charge	A vide
Rhin / Saône	134	88	26,8	17,6
Canal	18	12	3,6	2,4

Les trajets sont tous en charge, seule la donnée de consommation en charge est utilisée.

Pour la partie Rhin / Saône la consommation est de 179 litres et pour la partie Canal la consommation est de 204 litres. Au total, sur une boucle (aller + retour) l'automoteur consommera 765 litres de carburant. Les émissions de CO2 équivalentes par trajet A/R sont de 2,26 tonnes (soit 497 tonnes/an).

La partie routière (pré- et post-acheminements) est détaillée ci-après :

Il n'y a pas à proprement dit de trajet d'approche ou livraison finale. Les pré- et postacheminements sont les trajets à l'intérieur des sites ; ils sont modélisés en porte-conteneurs avec l'hypothèse d'un quai séparé de 1,5 km par rapport à la zone de stockage. L'utilisation de porteconteneurs permet une meilleure utilisation des moyens de manutention et un gain de temps (ils ne sont pas affectés au transport sur le site mais aux opérations de chargement et déchargement des conteneurs).

Un porte-conteneur (plateau) pourra transporter 5 conteneurs 7' ou 4 conteneurs 10'HC. Il faut compter 0,33 h pour charger et décharger les 5 conteneurs 7' et 0,27 h pour les 4 conteneurs 10'HC.

Site	Distance (km)	Vitesse	Durée d'une boucle (h)	
Site Distance (moyenne (km/h)	conteneurs 7'	conteneurs 10'HC
SEPT-FONS	1,5	35	0,42	0,35
MULHOUSE	1,5	35	0,42	0,35

Site	BOUCLES /jour		DUREE total /jour (h)	
Site	conteneurs 7'	conteneurs 10'HC	conteneurs 7'	conteneurs 10'HC
SEPT-FONS	6	3	2,5	1,1
MULHOUSE	6	3	2,5	1,1

A partir de ces résultats, on en déduit qu'un seul porte-conteneurs est nécessaire par site. Le besoin en personnel est le suivant :

Possins nor site	Conteneurs 7'		Conteneurs 10'HC	
Besoins par site	SEPT-FONS	MULHOUSE	SEPT-FONS	MULHOUSE
DUREE TOTALE (h)	2,5	2,5	1,1	1,1
Nbre de porte-conteneurs	1	1	1	1
Nbre ETP /jour (conducteurs)	0,4	0,4	0,2	0,2

Consommation de carburant et émissions de CO2 pour les trajets routiers

La consommation d'un porte-conteneurs est de 37,90 litres /100km.

- Pour les conteneurs 7', la distance parcourue est de 36 km /jour. La consommation équivalente est de 13,6 litres par jour.
- Pour les conteneurs 10'HC, la distance parcourue est de 18 km /jour. La consommation est de 6,8 litres /jour.

Par an, cela représente 8,9 tonnes pour les conteneurs 7' et 4,4 tonnes pour les conteneurs 10'HC.

Préparation des marchandises sur les sites logistiques et manutentions

OPERATIONS	PERATIONS Détails		Matériels	Personnel
Pré- et Post- acheminements	Chargement camion	0,08 h/conteneur	Chariot	Cariste
Chargement fluvial	Stock vers quai fluvial	0,04 h/conteneur	Chariot	Cariste
Déchargement fluvial	Quai fluvial vers stock	0,04 h/conteneur	Chariot	Cariste
Gestion	gestion des sites	7 h /jour /site	-	Chef de site

Les chariots sont des chariots élévateurs pour charges lourdes

Le nombre de conteneurs et de tonnes traités par jour sont regroupés ci-après (utilisés pour calculer le matériel nécessaire et les ETP) :

Nbre de conteneurs et	Conter	neurs 7'	Conteneurs 10'HC		
tonnages	SEPT-FONS MULHOUSE		SEPT-FONS	MULHOUSE	
Conteneurs max /sens	29	27	10	9	
Conteneurs vides	0	2	0	1	
TOTAL CONTENEURS	29	29	10	10	
TOTAL TONNES	240	220	240	220	

Le besoin en matériels et en personnel sont les suivants :

Matériels et personnel	Conten	eurs 7'	Conteneurs 10'HC			
Materiels et personnel	SEPT-FONS	MULHOUSE	SEPT-FONS	MULHOUSE		
Matériels						
Chariots	1 1		1	1		
Personnel (en ETP /jour)						
Cariste	0,7	0,7	0,3	0,3		
Chef de site	1	1	1	1		

V.E.2.c) Calcul des coûts

Amortissements: les montants des investissements sont recensés ci-après, ainsi que les durées des amortissements et les taux des éventuelles subventions d'investissement.

INVESTISSEMENT (EUR)		Scénario 7'	Scénario O'HC	Prix achat unitaire (€)	Durée amortiss.	Taux de subvention
FLUVIAL	Automoteurs	22	22	560 000 € [1]	30	36% [2]
ROUTIER	Plateau	2	2	100 000 €	15	-
UTI	conteneurs 7'	731	-	2 500 €	20	20% [3]
UII	conteneurs 10'HC	ı	252	3 000 €	20	20% [3]
Manutention	Reachstacker	2	2	350 000 €	15	25% [2]
ivianutention	Chariot	2	2	200 000 €	15	25% [2]
Aménagements	SEPT-FONS	1	1	500 000 € [4]	50	20% [3]
portuaires	MULHOUSE	1	1	900 000 € [4]	50	20% [3]

^{[1] =} Barge en zone longue avec logement

Au total, les montants des amortissements annuels sont les suivants :

Amortissement /an	Scénario 7'	Scénario 10'HC
Total hors subvention	807 546 €	742 047 €
Montant subvention	-252 452 €	-239 352 €
Montant avec subvention	555 094 €	502 695 €

Coûts d'exploitation : les coûts d'exploitation pour le fluvial sont répartis de la même manière que dans les scénarios précédents (ils ne sont pas représentés ici, cf. annexes). Pour l'ensemble des postes du scénario, les coûts d'exploitation, subdivisés par grand poste, sont les suivants :

Exploitation /an	Scénario 7'	Scénario 10'HC
Automoteur	1 884 365 €	1 866 809 €
Porte-conteneurs	108 026 €	92 671 €
Matériel de manutention	127 283 €	43 683 €
Frais de personnel	210 056 €	149 688 €
TOTAL (hors subvention)	2 329 730 €	2 152 851 €
Subvention coup de pince [1]	-382 800 €	-132 000 €
Subvention CEE [2]	-23 592 €	-23 639 €

^{[1] = 15€} par changement modal, hors dépotage (conteneurs vides ou pleins)

Total des coûts

Le total des coûts (amortissement et exploitation) est présenté dans le tableau ci-après et ramené à l'unité d'œuvre (conteneur, EVP, tonnes) :

BUDGET	Hors sub	ovention	Avec subvention		
BODGET	Scénario 7'	Scénario 10'HC	Scénario 7'	Scénario 10'HC	
Amortissement	807 546 €	742 047 €	807 546 €	742 047 €	
Exploitation	2 329 730 €	2 152 851 €	2 329 730 €	2 152 851 €	

^{[2] =} Subvention VNF pour l'achat des bateaux (200 000 € max par bateau et par opérateur sur engagement de 5 ans minimum si le montant du bateau est supérieur à 10 000 € HT), le taux est ramené au montant du bateau hors aides, pas de plafond appliqué pour le taux de subvention. Également : 100 000€ pour les études de conception (/projet). Pour le matériel de manutention, 20% d'aides.

^{[3] =} aide ADEME, 20% du surcoût d'investissement par rapport à la route

^{[4] =} les aménagements portuaires sont pris en compte s'agissant de sites privés

Taux d'emprunt = 2%/an. Hypothèse, durée d'emprunt = durée d'amortissement

^{[2] = 0,3}c€/kWh économisés (avec 1litre gasoil = 10,6 kWh)

Subvention	-	-	-658 844 €	-394 992 €
TOTAL	3 137 276 €	2 894 898 €	2 478 432 €	2 499 906 €
Nbre de conteneurs	12 320	4 180	12 320	4 180
Conversion en EVP	2 200	2 200	2 200	2 200
Nbre de tonnes	101 200	101 200	101 200	101 200
COUT €/conteneur	255 €	693 €	201€	598 €
COUT €/EVP	1 426 €	1 316 €	1 127 €	1 136 €
COUT €/tonne	31€	29€	24€	25 €

Tableau 37: total des coûts pour le scénario 3 (cible)

Le coût moyen ramené à la tonne est de 24 € (dans le cas le plus favorable, avec subvention).

Les résultats économiques entre 7' et 10'HC sont très proches. Ces UTI sont particulièrement bien adaptées aux besoins du chargeur (moins de manutention avec les 10'HC mais subvention supérieure dans le cas du 7').

Les conteneurs 7' semblent mieux adaptés car ils permettent de conserver une réserve de chargement dans le bateau (taux de chargement : 66% des places occupées contre 100% avec les conteneurs 10'HC). Ainsi, la solution 7' est plus prudente car elle autorise une réserve de volume si nécessaire. Dans tous les cas, la mise en œuvre du transport fluvial permet une économie de l'ordre de 25% à 40% des coûts (par la route, le coût est de 41 € /tonne).

V.E.2.d) Calcul des coûts externes

L'impact environnemental des scénarios est également analysé et permet de compléter l'analyse en apportant un éclairage différent. Les données utilisées sont celles des scénarios précédents (Commission Européenne - DG TREN – 2008).

Le nombre de véhicules.km est de 7920 /an pour les transports de 7' et 3960 /an pour les 10'HC. Pour la partie fluviale, le nombre de barge.km est de 184 800 /an pour les 7' et pour les 10'HC.

Les résultats sont les suivants :

Coûts externes	Scénario 7'	Scénario 10'HC
Congestion	19 800 €	9 900 €
Accidents	341€	170 €
Pollution atmosphérique	1 118 499 €	1 118 270 €
Bruit	87€	44 €
Changement climatique	103 615 €	103 551 €
Amont/Aval	96 244 €	96 170 €
TOTAL (€)/an	1 338 586 €	1 328 105 €
Nbre de conteneurs	12 320	4 180
Nbre EVP	2 200	2 200
Nbre Tonnes	101 200	101 200
COUT €/Conteneur	109 €	318€
COUT €/EVP	608 €	604 €
COUT €/tonne	13€	13 €

Tableau 38 : coûts externes pour le scénario 3 (cible)

Les coûts externes représentent un coût de 13€. Ce niveau est très inférieur à celui du schéma 100% route (59€/tonne) et représente un autre argument en faveur de scénario de ce type.

La synthèse des résultats et leur comparaison avec les autres scénarios sont présentées dans la suite du document.

V.F. Synthèse et analyse des scénarios

Les scénarios ont été présentés selon les axes suivants :

TECHNIQUE Matériel nécessaire pour la manutention etle transport			
SOCIAL	Emplois (fonctions, nombre d'ETP)		
ECONOMIQUE	Investissement, coûts d'exploitation, aides publiques		
ENVIRONNEMENTAL	Consommation énergétique, CO2, coûts externes		

Les résultats sont comparés et commentés ci-après.

V.F.1. MATÉRIEL

		SCENA	RIO 1	SCENARIO	SCENA	ARIO 3
Matériel		Conteneurs 7'	Conteneurs 10'HC	2	Conteneurs 7'	Conteneurs 10'HC
FLUVIAL	Automoteurs	4	3	2	22	22
	Benne	3	3			
ROUTIER	Porte-conteneurs	6	3		2	2
	Tautliner			2		
UTI	conteneurs 7'	669			731	
UII	conteneurs 10'HC		211			252
	Reachstacker	2	2		2	2
	chariot lourd	8	4		2	2
Manutention	chariot élévateur			6		
	Compacteur	2	2			
	station lavage	4	2			
INVESTISS	SEMENT TOTAL	11 140 500 €	8 467 000 €	1 375 000 €	16 847 000 €	15 776 000 €

Tableau 39 : synthèse des coûts matériels

Le scénario 2 est celui qui nécessite le moins de matériel. Les palettes peuvent être manutentionnées avec un simple chariot élévateur (2 par bateau). Ces chariot peuvent également servir à charger et décharger les camions et pour toutes autres tâches de manutention des palettes. Il n'y a donc pas d'investissement spécifique pour la manutention.

De la même manière, les camions utilisés sont des semi-remorques « standard » (tautliner) et ils peuvent être affectés à d'autres tâches si nécessaires. Les sites étant rapprochés, il est possible de ne pas affecter un camion par site mais de partager un seul camion entre les deux sites (il se déplace en fonction des besoins) ; cette organisation permettrait de réduire les investissements. De plus, le camion pourrait emporter un chariot élévateur afin de réduire encore les investissements. Une telle organisation pourrait réduire de 2€ environ le coût à la tonne.

N'ayant pas besoin de matériel spécifique, le transport de palettes pourrait tout à fait être combiné à un transport de conteneurs.

Les scénarios 1 et 3 nécessitent des investissements très importants en bateaux (22 bateaux dans le scénario 3 et 3 à 4 bateaux dans le scénario 1), en conteneurs (scénario 1 et 3, environ 250 conteneurs 10'HC ou 700 conteneurs 7'), en camions (6 à 9 camions dans le scénario 1, bennes et porte-conteneurs) et en chariot pour charges lourdes (4 à 8 dans le scénario 1). Dans le scénario 1, compte tenu du nombre de conteneurs à charger et à décharger à chaque voyage, les moyens

sont utilisés à plein temps et peuvent difficilement être partagés entre sites proches. Le besoin en financement pour ces investissements peut freiner les chargeurs à basculer sur ce type de schéma multimodal. Cela est d'autant plus vrai que par rapport à un schéma tout route, les investissements sont bien plus importants.

Le sujet des investissements est capital car c'est aujourd'hui un frein pour certains acteurs. Les subventions à l'investissement sont un argument pour encourager les acteurs à basculer leur schéma traditionnel « tout route » sur un schéma multimodal.

V.F.2. EMPLOIS

Les emplois nécessaires et le nombre d'ETP (équivalents temps plein) correspondant sont regroupés dans le tableau suivant :

	SCENARIO 1		SCENARIO	SCENA	ARIO 3
ETP /an	Conteneurs	Conteneurs	2	Conteneurs	Conteneurs
	7'	10'HC	2	7'	10'HC
CARISTES	4 600	1 500	196	506	198
AGENTS	1 250	675	ı	-	-
CHEF DE SITE	500	500	600	440	440
TOTAL ETP/an	6 350	2 675	796	946	638
ETP /jour	25,4	10,7	2,7	4,3	2,9
TONNES	104 070	104 070	59 063	101 200	101 200
EVP (*)	11 750	11 750	9 923	2 200	2 200
TONNES /ETP	16,4	38,9	74,2	107,0	158,6
EVP /ETP	1,9	4,4	12,5	2,3	3,4

Tableau 40 : synthèse des créations d'emploi

(*) = les unités de transport utilisées dans les scénarios (conteneurs 7', 10'HC ou palettes) ont été traduit en EVP afin de pouvoir les comparer plus facilement

Le scénario 2 qui nécessite le moins d'investissement est également le scénario qui nécessite le moins d'ETP (sauf dans le cas d'un transport de conteneurs 10'HC dans le scénario 3 qui est alors le moins consommateurs en ressources humaines).

Les résultats du **scénario 3** sont proches mais l'efficacité des ETP par EVP est moindre (ceci s'explique notamment par des trajets plus long entre le quai et l'entrepôt et un nombre moins important de moyens de manutention)

A l'inverse, **le scénario 1** nécessite une équipe très importante, surtout dans le cas des conteneurs 7'avec plus de 25 ETP /jour contre 10,7 ETP /jour pour les 10'HC. Il faut veiller à limiter les ETP /jour pour préserver la pertinence économique des scénarios. Les conteneurs 7' nécessitant davantage de manutention que les 10'HC, ils sont dans ce scénario moins adaptés au transport fluvial.

Il faut s'appliquer à limiter le coût des ruptures de charges qui pèsent lourd sur le transport fluvial et qui trop souvent réduisent sa pertinence économique. En zone courte, le coût des manutentions se fait davantage ressentir et il est difficile d'obtenir une bonne rentabilité hors subvention. A l'inverse en zone longue (scénario 3) il n'est pas nécessaire, pour assurer la compétitivité du fluvial, de subventionner l'exploitation.

V.F.3. RÉSULTATS ÉCONOMIQUES

Le tableau suivant regroupe l'ensemble des principaux résultats :

	SCENARIO 1			SCENA	RIO 2	SCENARIO 3				
	SANS SUBVENTION AVEC SUBVENTION		<u>SANS</u>	AVEC	SANS SUBVENTION A		AVEC SUB	AVEC SUBVENTION		
	7'	10'HC	7'	10'HC	SUBVENTION	SUBVENTION	7'	10'HC	7'	10'HC
NBRE TONNES	104 070			59 063			101 200			
MULTIMODAL										
Amortissement	591 897 €	414 853 €	591 897 €	414 853 €	120 627 €	120 627 €	807 546 €	742 047 €	807 546 €	742 047 €
Subvention investissement	-	-	-133 223 €	-94 995 €	-	-33 025 €	-	-	-252 452 €	-239 352 €
Transport fluvial	671 513 €	578 869 €	671 513 €	578 869 €	276 890 €	276 890 €	1 884 365 €	1 866 809 €	1 884 365 €	1 866 809 €
Pré- et post- acheminements	827 827 €	463 707 €	827 827 €	463 707 €	160 523 €	160 523 €	108 026 €	92 671 €	108 026 €	92 671 €
Équipements manutention	1 323 600 €	428 990 €	1 323 600 €	428 990 €	590 625 €	590 625 €	127 283 €	43 683 €	127 283 €	43 683 €
Personnel sur sites	1 220 100 €	523 950 €	1 220 100 €	523 950 €	702 450 €	702 450 €	210 056 €	149 688 €	210 056 €	149 688 €
Subvention exploitation	-	-	-2 282 633 €	-723 748 €	-	-1 700 €	-	-	-406 392 €	-155 639 €
TOTAL COUTS	4 634 936 €	2 410 369 €	2 219 080 €	1 591 625 €	1 851 115 €	1 816 219 €	3 137 276 €	2 894 898 €	2 478 432 €	2 499 906 €
SUBVENTION	-	_	2 415 856 €	818 743 €	-	34 896 €	-	-	658 844 €	394 992 €
NBRE d'unités de transport	68 000	21 500	68 000	21 500	118 125	118 125	12 320	4 180	12 320	4 180
conversion en EVP	11 750	11 750	11 750	11 750	9 923	9 923	2 200	2 200	2 200	2 200
COUT €/unité de transport	68 €	112€	33 €	74 €	16€	15 €	255 €	693 €	201€	598 €
COUT €/EVP	394 €	205 €	189€	135 €	187€	183 €	1 426 €	1 316 €	1 127 €	1 136 €
COUT €/tonne	45 €	23 €	21€	15 €	31.3 €	30.8 €	31 €	29 €	24€	25 €
100% ROUTE										
TOTAL		1 687	500€		1 350 000 € 4 139 490 €					
NBRE unités de transport		68 (000		118	125	12 320			
conversion en EVP		11	750		9 9	23		2 2	00	
COUT €/unité de transport		25	€		11	€	336€			
COUT €/EVP		14	4 €		136	5€	1 882 €			
COUT €/tonne	16€			23	€		41	.€		
ECART COUTS 100% RO	UTE vs MU	ILTIMODA	L							
TOTAL MULTIMODAL	4 634 936 €	2 410 369 €	2 219 080 €	1 591 625 €	1 851 115 €	1 816 219 €	3 137 276 €	2 894 898 €	2 478 432 €	2 499 906 €
TOTAL 100% ROUTE	1 687 500 €	1 687 500 €	1 687 500 €	1 687 500 €	1 350 000 €	1 350 000 €	4 139 490 €	4 139 490 €	4 139 490 €	4 139 490 €
MONTAN DE L'ECART	2 947 436 €	722 869 €	531 580 €	-95 875 €	501 115 €	466 219 €	-1 002 214 €	-1 244 592 €	-1 661 058 €	-1 639 584 €
Écart coût €/tonne	28 €	7€	5€	-1€	8€	8€	-10 €	-12 €	-16€	-16 €
Écart montant de départ	175%	43%	32%	-6%	37%	35%	-24%	-30%	-40%	-40%

Tableau 41 : synthèse des résultats économiques

La répartition des coûts entre postes, hors subvention, est présentée ci-après (les transports des conteneurs 7'hors subvention n'étant pas les plus favorables en termes économiques dans les scénarios étudiés, seule la répartition pour les conteneurs 10'HC est détaillée) :

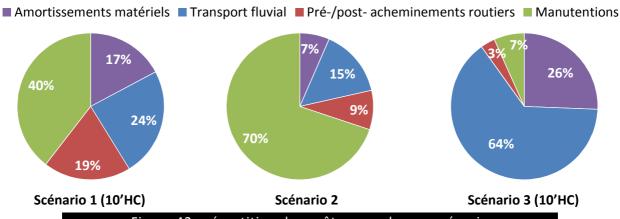


Figure 42 : répartition des coûts pour chaque scénario

La répartition des coûts est très différente entre scénarios.

La répartition des coûts du scénario 1 est équilibrée (hormis la manutention) et reste « classique » pour un transport multimodal du fait des ruptures de charge ; à l'inverse dans le scénario 3, la répartition des coûts est très déséquilibrée (part très importante du transport fluvial : 64%) ce qui s'explique par le distance à parcourir (zone longe) et le nombre de bateaux utilisés (22 bateaux). Le scénario 2 connait également un déséquilibre mais se rapproche du scénario 1 avec une part très importante pour les manutentions (70% des coûts) du fait de l'unité transportée (palettes) ; le coût de manutention se répartit entre coûts de personnels (54%) et coûts de fonctionnement du matériel de manutention (46%). Une optimisation logistique des sites pourrait permettre de réduire les coûts de manutention.

Ces répartitions traduisent les contraintes d'organisation au sein de chacun des scénarios, en particulier pour le scénario 2 : besoin important en manutention pour des marchandises fractionnées (palettes) et pour le scénario 3 : zone longue qui oblige à investir fortement dans du matériel fluvial dont la part dans le coût total est beaucoup plus importante qu'en zone courte.

Par ailleurs, dans les scénarios étudiés, l'implantation directement sur les ports et la possibilité de disposer de quais fluviaux à proximité immédiate des sites (voire sur les sites) permet de réduire significativement les coûts routiers alors que généralement la partie routière (pré- et post-acheminements) des schémas multimodaux représente une part importante des coûts.

45€ 41€ 40€ 31€ 31€ 31€ 29€ 30€ 24 € - 25 € 23€-21€ 23 € 15 € _ 16 € 20€ 10€ 0€ 10'HC 10'HC ROUTE Hors Avec ROUTE 7' 10'HC 10'HC ROUTE (subv) (subv) subv subv (subv) (subv)

Comparatif des coûts des scénarios (en €/tonne) :

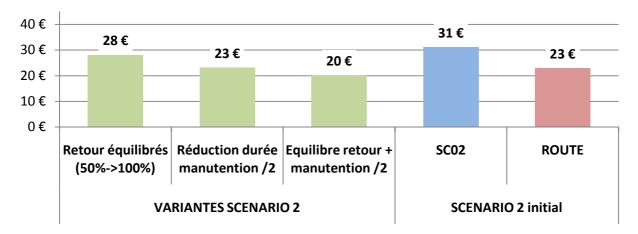
SCENARIO 1

Figure 43 : comparatif des coûts par scénario

SCENARIO 2

Il existe des écarts importants au sein même des scénarios, compte tenu des écarts de manutentions (et d'investissements en matériels).

Dans le scénario 1, le transport de conteneurs 10'HC (avec les subventions actuelles) peut rivaliser avec la route en termes économiques mais le transport de 7' nécessite un trop grand nombre de manutention et n'est pas viable. Sans subvention, ce scénario n'est pas compétitif par rapport à la route.


Le scénario 3 trouve rapidement un équilibre économique (situation idéale) et il peut fonctionner même sans subvention.

A l'inverse, le scénario 2 reste déséquilibré en termes financiers et nécessiterait un niveau de subvention supérieur (du type subvention à l'UTI), un meilleur équilibre des flux ou encore une organisation optimisée pour être viable ; sans ces modifications, le transport de palettes restera un trafic complémentaire d'autres trafics plus importants.

SCENARIO 3

Pour des flux équilibrés (flux aller = flux retour), une optimisation de la manutention (temps de chargement réduit par 2 = 1min par palette au lieu de 2min) ou encore une combinaison de ces facteurs, les résultats seraient améliorés et pourraient même atteindre l'équilibre :

(Avec un niveau de subvention identique au scénario 2 non optimisé)

Figure 44 : variation de paramètre (scénario 2) : exemples d'impacts

Enfin, ces résultats n'intègrent pas les coûts externes (cf. suite du document) qui permettent d'augmenter la pertinence du fluvial.

V.F.4. RÉSULTATS ENVIRONNEMENTAUX (ÉMISSIONS DE CO2 ET COÛTS EXTERNES)

En intégrant les coûts pour la collectivité, les écarts entre solutions routières et multimodales s'accentuent ; le montant des coûts externes étant largement en faveur des solutions intégrant une partie fluviale.

Les couts externes pris en compte sont les suivants :

Congestion	Bruit
Accidents	Changement climatique
Pollution atmosphérique	Amont/Aval

Source: Commission Européenne / DG TREN - 2008

Différentes méthodes existent pour l'évaluation des coûts externes et donnent des résultats différents. Il s'agit avant tout de mettre en évidence l'existence d'un surcoût pour la société lorsque le transport est exclusivement routier.

Les résultats sont les suivants :

	SCENARIO 1 7' 10'HC		CCENADIO 3	SCENARIO 3	
			SCENARIO 2	7′	10'HC
NBRE TONNES	104 070		59 063	101 20	
MULTIMODAL (CO2 et coûts	externes)				
CO2 FLUVIAL	122	183	73	497	497
CO2 partie routière	299	135	5	9	4
TOTAL CO2 (tonnes)	422	318	79	506	501
TOTAL COUTS EXTERNES	958 455 €	684 696 €	159 012 €	1 338 586 €	1 328 105 €
COUT €/unité de transport	14€	32€	1€	109 €	318€
COUT €/EVP	82 €	58€	16€	608 €	604€
COUT CO2 €/tonne	9€	7€	3€	13 €	13 €
100% ROUTE					
TOTAL CO2 (tonnes)	666 252 2		2 6	594	
TOTAL COUTS EXTERNES	1 390 081 €		297 754 €	6 004 701 €	
COUT €/unité de transport	65€		3€	1 437 €	
COUT €/EVP	118€		30 €	2 729 €	
COUT €/tonne	13	3€	5 € 59 €		9€
ECART COUTS EXTERNES					
Ecart CO2 (tonnes)	-244	-348	-174	-2 189	-2 193
Ecart coût €/tonne	-4€	-7€	-2€	-46 €	-46 €

Tableau 42 : synthèse des résultats environnementaux

Les émissions de CO2 augmentent très fortement dès que les parcours routiers augmentent (sur la route ou sur les sites). Cela traduit à nouveau l'impératif de réduction des parcours de pré- et post- acheminement et la nécessité de réduire au maximum les déplacements de marchandises sur les sites. Plus les marchandises pourront être près des quais, plus il sera possible de réduire les émissions de CO2.

La prise en compte des coûts externes permet d'augmenter l'intérêt des scénarios multimodaux. Le scénario 1 qui ne présente qu'un faible écart avec la route voit ici son intérêt affirmé et le scénario 3 déjà très avantageux en multimodal confirme sa pertinence. Pour le scénario 2, l'écart n'est pas assez important pour faire basculer des flux sur les seuls arguments économiques. Cette situation confirme l'intérêt de pouvoir proposer des transports mixtes entre conteneurs et palettes afin d'augmenter le taux de remplissage et proposer des services à plus bas coût.

On peut reprendre le tableau de comparaison des coûts par scénario en intégrant les externalités, ce qui revient au graphique ci-dessous :

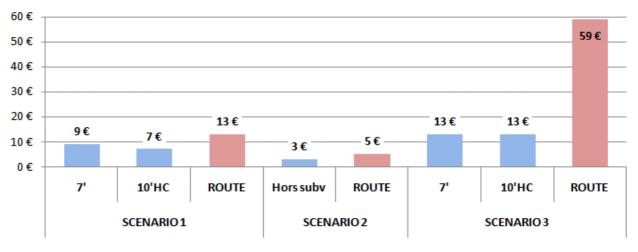


Figure 45 : comparatif des coûts par scénario intégrant les externalités

V.F.5. SYNTHÈSE

Le scénario 1 met en évidence l'intérêt de mutualiser des organisations de transport afin de mettre en place des services multimodaux en zone courte. Les flux plus importants et équilibrés permettent de remplir au mieux les bateaux et de proposer un service régulier.

Le scénario 2 considère un service régulier de transport de palettes pour la livraison d'une zone d'activité (bord à voie d'eau). Le résultat économique met en évidence le besoin de disposer d'un service équilibré. Dès que les trafics fluviaux sont déséquilibrés l'intérêt économique est fortement remis en question. Idéalement ce service devrait être réalisé en complément d'autres trafics (selon les quantités); par exemple en complément de ceux du scénario 1 qui présentent un léger déséquilibre (et donc de la place disponible) avec un service du même type (boucles régulières du type « navettes »). Les palettes peuvent être conteneurisées ou à l'inverse les déchets peuvent être palettisées (cartons, déchets d'emballages, palettes en provenance d'autres zones de fret ...) mais il est également possible d'envisager des chargements mixtes : palettes + conteneurs. Enfin, en zone courte, les délais ne sont pas très différents de ceux de la route, il est possible pour les chargeurs d'obtenir leur marchandise à J+1; cela permet de ne pas désorganiser les schémas de transport ni de dégrader les services logistiques.

Le scénario 3 confirme que les flux en zone longue équilibrés sont le domaine de prédilection du fluvial (à condition de ne pas avoir de contrainte de délai). Toutefois il faut disposer d'une flotte importante et des investissements lourds doivent pouvoir être réalisés. Les conditions de navigation doivent être fiables pour assurer cette régularité.

V.F.6. AUTRES SCÉNARIOS ENVISAGEABLES

Les 3 scénarios étudiés ne sont pas les seules organisations ou utilisations possibles du fluvial.

D'autres scénarios peuvent être envisagés, par exemple **des scénarios mixtes** ou des palettes seraient transportée en spot sur des flux réguliers de conteneurs. De la même manière, il est possible d'envisager des transports de vrac en complément de transport régulier de conteneurs ou de palettes.

Des scénarios centrés sur la distribution au cœur des villes en multipoints (courte distance, zone urbaine dense) pourraient également être envisagés ; dans ce cas il sera nécessaire de disposer de flux dans les 2 sens (réduire les trajets à vides), par exemple en organisant des boucles entre entrepôts de part et d'autres des villes. La possibilité de disposer de surfaces logistiques au cœur des villes en bord à voie d'eau (pour ceux qui utilisent le fluvial) est un facteur qui n'a pas été évalué mais qui pourra être valorisé pour le calcul du coût du scénario (permet de réduire les surfaces affectées au stockage en ville tout en conservant un stock à proximité)

Enfin, il est possible de considérer des scénarios « hub and spoke » entre petit gabarit et grand gabarit.

Toutefois, quels que soient les scénarios retenus, il apparait aujourd'hui indispensable de moderniser le transport au gabarit Freycinet et son organisation afin de disposer de tous les facteurs clés du développement de nouvelles solutions. Des préconisations, détaillées à la suite, ont été élaborées en ce sens.

VI. Bilan, préconisations et conclusions

Ce dernier chapitre présente le bilan global et permet de conclure quant à la pertinence des choix proposés et à la viabilité du concept, préalable indispensable à une mise en œuvre préopérationnelle (au travers d'un pilote) puis en conditions réelles d'exploitation (à grande échelle).

Ainsi, sur la base des observations menées tout au long de l'étude, et en particulier grâce aux enseignements apportés par les différents scénarios, différentes recommandations sont formulées, en particulier des préconisations à destination des pouvoirs publics et des professionnels du secteur, qui permettront d'améliorer l'intérêt économique de la filière et plus largement de permettre la croissance du report modal et l'augmentation des trafics sur le réseau Freycinet.

VI.A. Enseignements des scénarios

Périmètre	COURTE DISTANCE (dont urbain)	LONGUE DISTANCE
CONTENEURS (7' et 10'HC)	• Mutualisation indispensable pour des flux suffisants et équilibrés (mais nécessite de trouver un partenaire) • Conteneurs 10'HC particulièrement bien adaptés (volume offert et manutention « standard ») • L'utilisation de conteneurs permet de mélanger différentes marchandises dans un même bateau • Site en bord à quai : avantage supplémentaire • Besoin d'avoir des bateaux avec un seul marinier pour assurer des coûts bas (organisation en relais)	 SCENARIO 3 Service dédié rendu possible par des flux suffisants et équilibrés Besoin d'un réseau fiable (en zone longue les contraintes s'accumulent) et avec une amplitude suffisante (passage des écluses à surveiller) Pas de pré- et post- acheminement routiers, sites directement en bord à voie d'eau : limite au maximum les frais d'acheminement
PALETTES	• La palette est un standard reconnu, permet de s'insérer très simplement dans une chaine logistique existante • Pour un service dédié les trafics doivent être très importants et équilibrés pour obtenir des coûts compétitifs. Solution alternative : s'inscrire dans des boucles existantes • Besoin d'un système d'information performant pour un booking des navettes simplifié (et pour informer le client de la position de sa marchandise)	Pas de scénario de transport de palettes en zones longue étudié

Tableau 43 : enseignements des scénarios

A partir de l'expression des rôles des différents acteurs de la logistique fluvial (cf § II.E.1) et du détail des scénarios opérationnels présentés dans la section précédente, le jeu d'acteurs mis en œuvre dans ces scénarii peut être résumé dans le tableau ci-après.

ACTEUR	FONCTIONS	LOCALISATION
Directeur logistique	Décision des schémas de transport et coordinateur central	Siège de la société
Marinier	Conduite d'automoteurs (peut participer au chargement/ déchargement)	Transport fluvial
Chauffeur routier	Conduite de poids-lourds (ne réalise pas de manutention)	Transport routier
Chef de site	Organisation des sites logistiques et surveillance des opérations	Entrepôt logistique / site portuaire
Divers agents sur sites	Opérateurs logistiques, caristes, réceptionnistes, gardiens	Entrepôt logistique / site portuaire

Tableau 44 : jeu d'acteurs des scénarios de report modal fluvial

VI.B. Actions prioritaires

Pour permettre la mise en œuvre de scénarios performants et compétitifs il est nécessaire de **mettre en œuvre des actions prioritaires.** D'autres actions pourront évidemment être menées mais celles-ci sont indispensables pour la bonne marche du système et son développement.

Les actions prioritaires peuvent être regroupées en grandes catégories (elles sont identifiées à partir des phases précédentes de l'étude et des résultats des scénarios) :

- Repenser le matériel (bateau et manutention)
- Repenser les schémas de transport
- Intervenir sur le réseau
- Améliorer la commercialisation des services
- Revaloriser la filière

VI.B.1. REPENSER LE MATÉRIEL (BATEAUX ET MANUTENTION)

Besoin identifié	Solution préconisée
→Disposer de bateaux adaptés à de nouveaux marchés identifiés : conteneurs et palettes	
→ Pouvoir investir dans du matériel fluvial sans faire peser des coûts trop élevés sur l'exploitation	1/ Moderniser les unités fluviales
→ Être en mesure de disposer rapidement de nouvelles unités fluviales (marché déjà existant mais pas de bateau adapté)	2/ Aider les investissements en matériel fluvial (et de
→ Être capable de naviguer avec un équipage réduit (bateaux faciles à manœuvrer)	manutention) 3/ Veiller à la disponibilité
→Pouvoir charger et décharger simplement les unités fluviales, tant à quai qu'à partir du bateau pour limiter les investissements et les durées associés	des chantiers navals

1/ Moderniser les unités fluviales

L'étude (phase 2) a permis de présenter des unités fluviales adaptées au transport de conteneurs (7' et 10'HC) et de palettes. Cette adaptation ouvre l'accès à un très vaste marché.

De plus des améliorations techniques facilitent la navigation et les manœuvres (notamment timonerie à l'avant afin de disposer de la visibilité suffisante ou encore enfoncement amélioré). Les manœuvres doivent pouvoir être réalisées par un marinier seul (propulseurs de manœuvre d'étrave à l'avant et à l'arrière).

La mise en œuvre de nouveaux bateaux permettra de réaliser des économies en carburant (moteurs moins puissants qu'actuellement, mieux adaptés au réseau Freycinet)

Ainsi, il est indispensable de disposer de bateaux modernes, adaptés aux modes de conditionnement actuels (polyvalent en termes de possibilité de chargement : conteneurs, palettes, vrac), aux caractéristiques du réseau emprunté et à la distance parcourue (logement en zone longue et sans logement en zone courte).

Investir dans une telle cale (ciblée sur un réseau) nécessite de disposer d'une bonne visibilité (besoin d'une commercialisation adaptée, cf. suite des actions prioritaires) et d'une capacité d'investissement (cf. point suivant).

2/ Encourager les investissements en matériel fluvial (et de manutention)

Les scénarios 1 et 2 (zone courte) ne sont pas viables sans subvention. En cas d'absence de subvention pour l'investissement du matériel, il est très probable que les acteurs ne basculent pas leur flux sur un schéma plus couteux que la route.

De plus, les entretiens ont mis en évidence la difficulté pour les acteurs de s'engager sur des investissements importants à long terme. Ils ne souhaitent pas investir pour un projet sans évaluer les possibilités de reconversion du matériel en cas d'échec. De plus, la construction d'unités fluviales peut prendre du temps (jusqu'à 2 ans), ce qui accentue les incertitudes.

Il est indispensable de maintenir les aides existantes afin d'encourager les investissements, en particulier pour les projets en zone courte.

3/ S'assurer de la disponibilité des chantiers de construction et des sites d'entretien

Dans les scénarios, nous supposons que le matériel est déjà existant et disponible. Toutefois, pour augmenter la cale disponible (tout en développant le trafic) il sera important de recenser les chantiers de construction existants et les capacités disponibles. Il faudra déterminer si les chantiers sont suffisamment dimensionnés par rapport aux ambitions.

Une première analyse du Cabinet Lebéfaude révèle les éléments suivants :

- Les prototypes présentés dans le cadre de cette étude peuvent être construits en 8 mois (2 mois d'études de détail + 6 mois de production).
- Les chantiers sont facilement disponibles en Pologne ou en Roumanie (d'autant plus que les coûts de transport entre le chantier et la France seront réduits du fait du gabarit Freycinet: pas besoin d'utiliser des convois exceptionnels ni d'approcher les bateaux par la mer, l'approche se fera directement par le fluvial).

Toutefois, en France, les chantiers de la Haute Seine pourraient construire ces bateaux;
 cela étant particulièrement pertinent car les coûts de construction en Europe ont tendance
 à s'équilibrer. Le type de bateau préconisé est simple à construire, il s'agit d'un bateau
 « idéal » pour ré initier la construction de bateaux en France à coûts intéressants.

Par ailleurs, en lien avec l'augmentation du nombre de bateaux, il apparait également nécessaire d'augmenter le nombre de sites d'entretien des bateaux en France pour réduire les trajets (sur le CSNE par exemple). Aujourd'hui, pour le tirage à sec, il faut aller en Hollande ou dans les grands ports maritimes et fluviaux (pas de cales sur le réseau Freycinet). De même pour l'entretien mécanique, il est nécessaire d'aller en Hollande(ou de faire venir des techniciens hollandais). Nous n'avons pas comptabilisé le coût de maintenance des bateaux dans les scénarios, elle devra être le plus faible possible pour ne pas déstabiliser l'équilibre économique.

VI.B.2. REPENSER LES SCHÉMAS DE TRANSPORT

Les scénarios étudiés mettent en évidence de marchés pour le Freycinet, où il permet de proposer un service avec une véritable performance économique: il n'est pas uniquement destiné au transport « spot » et il peut s'insérer dans des chaînes logistiques complètes et participer à leur performance sur des niches.

Besoin identifié	Solution préconisée
 → Disposer d'un service régulier à forte capacité → Etre capable de naviguer avec un équipage réduit (limite réglementaire à modifier) 	4/ Organiser des transports en navette, ouverts à différents chargeurs
→Augmenter la durée d'utilisation des bateaux afin de réduire les délais d'acheminement et de limiter les investissements en matériels (réduire le nombre de bateaux)	5/ Réorganiser les équipages (relais et équipages d'une seule personne)
→Pouvoir limiter les coûts de manutention	6/ Optimiser la manutention

4/ Organiser des transports en « navettes », ouverts à différents chargeurs

Les scénarios mettent en évidence l'intérêt d'organiser des navettes régulières (services pendulaires), quitte à regrouper des flux de différents chargeurs. La mise en place de schéma équilibrés et réguliers permet de disposer de schémas de transport concurrentiels par rapport à la route.

La livraison urbaine pourrait profiter d'une telle organisation. En zone courte, les délais ne sont pas trop dégradés (livraison en J+1) et le coût pertinent (si les flux sont équilibrés). Les unités Freycinet sont en mesure d'assurer l'acheminement final (le « dernier kilomètre ») des marchandises à partir des canaux desservant de nombreuses villes françaises et les zones commerciales depuis des entrepôts régionaux implantés le long de la voie d'eau ou encore des points de jonction entre petit et grand gabarit.

Pour des flux réguliers, massifiés et concentrés, il faudra dédier des moyens (un ou plusieurs bateaux), géré par les partenaires eux-mêmes ou par un tiers (plus simple). Ces moyens pourraient

également être utilisés ponctuellement pour d'autres liaisons en fonction de leurs disponibilités (selon les saisonnalités) ou encore pour d'autres trafics au cours de leur liaison régulière (moyens dédiés mais ouverts à d'autres trafics pour compléter leur chargement).

Les services en navette permettent également de simplifier la gestion de conteneurs vides (pas de conteneurs vide à stocker sur les ports : toujours en rotation).

5/ Réorganiser les équipages (relais et équipages d'une seule personne)

Les scénarios mettent en évidence qu'en zone courte, l'utilisation du bateau doit être maximisée afin de réduire l'investissement en matériel.

Ainsi, dans ce cas, la mise en place de relais (changement d'équipage) permet de ne pas interrompre les trafics, de réduire la durée du transport (comme cela est pratiqué régulièrement par le transport routier) et de limiter le nombre de bateaux à acheter.

Pour réduire les frais de personnel et simplifier l'organisation, un équipage d'une seule personne doit être rendu possible (ceci est déjà possible sur certaines voies, par arrêté; les conditions posées sont la capacité physique du marinier et la présence d'un propulseur d'étrave sur le bateau).

6/ Optimiser la manutention

La manutention est un poste important dans le transport multimodal (dans le scénario 2 : jusqu'à 70% des coûts). Les ruptures de charges doivent être les moins nombreuses possibles et les moins coûteuses. Il convient donc de réaliser des progrès dans ce domaine.

Une réduction des coûts de personnel peut être obtenue en favorisant la mutualisation des flux afin d'optimiser les plages horaires nécessitant des ressources en personnel.

L'utilisation de moyens embarqués permet de desservir des sites où les volumes ne justifient pas l'installation de moyens de chargement et de déchargement.

Pour réduire les besoins en personnel, l'utilisation de systèmes automatisés de pilotage des engins à terre (grues) pourraient être mis en œuvre pour donner la possibilité aux bateliers d'opérer des chargements. Idéalement, les quais publics devront disposer de matériels performants (et facilement accessibles à tous).

VI.B.3. INTERVENIR SUR LE RÉSEAU ET LES INFRASTRUCTURES D'ACCUEIL

Pour assurer la fiabilité du trafic et sa régularité, des interventions régulières devront être menées sur le réseau. Des sites devront être disponibles pour accueillir de nouveaux flux.

Besoin identifié	Solution préconisée
→Pouvoir naviguer avec des contraintes réduites (niveau d'enfoncement assuré et horaire de passage des écluses assoupli)	7/ Disposer d'un réseau fluvial fiable et bien adapté
→ Réduire au maximum les distances des pré- et post- acheminements routiers pour ne pas alourdir le bilan économique des schémas multimodaux	8/ Augmenter le nombre de sites en bord à voie d'eau

7/ Disposer d'un réseau fluvial fiable et bien adapté

En premier lieu il est nécessaire de disposer d'un réseau bien entretenu et fiable. Comme décrit dans le scénario 3, en zone longue (420 km fluvial), des aménagements pourraient être à prévoir : nouveaux dragages pour garantir l'enfoncement (et le niveau des biefs devra être contrôlé), les faucardages réalisés régulièrement, etc. Le service doit pouvoir être régulier (220 jours d'exploitation par an) et sans rupture.

Ainsi, les horaires des écluses (très ombreuses sur le parcours) devraient pouvoir être plus souples ; la cible n'est pas un réseau ouvert 24h/24 mais de pouvoir disposer en des points précis du réseau d'une amplitude élargie. Il sera particulièrement intéressant d'observer les résultats de la mise en place par VNF d'un système d'ouverture à la demande des écluses en dehors des plages actuelles. Il n'est pour l'instant pas nécessaire de modifier les horaires mais une étude pourrait être menée pour en déterminer la faisabilité par parcours et les seuils de déclenchement souhaités. Une étude ex-ante permettra aux utilisateurs potentiels de s'organiser dès à présent et connaître les points de réseau où cela est envisageable ou non.

8/ Augmenter le nombre de sites en bord à voie d'eau

Pour des services fluviaux compétitifs, il est nécessaire que les sites soient en bord à voie d'eau ou tout du moins à proximité immédiate, en particulier pour la courte distance. Cela permet de limiter les ruptures de charge et d'implanter les fonctions d'entreposage.

Les scénarios étudiés sont compétitifs du fait d'une distance réduite des pré- et postacheminements routiers. Il est donc essentiel de proposer des concessions en bord à voie d'eau, en priorité pour les utilisateurs du fluvial.

VI.B.4. AMÉLIORER LA COMMERCIALISATION DES SERVICES

Besoin identifié	Solution préconisée
 → Etre capable de démarcher de nouveauxsecteurs (autres que le marché du vrac traditionnel) → Pouvoir proposer des services avec une capacité importante, 	9/Réorganiser le commercial et développer des structures de commercialisation
réguliers et avec un suivi (interlocuteur unique)	10/ Développer les systèmes d'information et de
→ Disposer d'outils modernes d'optimisation et de communication	<u>communication</u>

9/ Réorganiser le commercial et développer des structures de commercialisation

Dans le cadre de l'utilisation d'une flotte sous-traitée, les chargeurs doivent disposer d'une bonne visibilité sur leurs partenaires potentiels et l'offre disponible. Or, le marché du fluvial est très atomisé, en particulier dans le cas du Freycinet, et les artisans bateliers accèdent difficilement aux grands contrats et appels d'offres des chargeurs. Il est donc recommandé de développer des structures capables d'assurer la commercialisation des services de transport :

- Aider les bateliers à se regrouper autour d'une structure centrale, par région par exemple
- Développer un réseau commercial dédié aux artisans
- Encourager les opérateurs actuels (ou nouveaux) à développer des flottes Freycinet

• Travailler avec des intégrateurs logistiques qui coordonneront les ressources en personnel et moyens et qui assureront le service commercial (ils disposent de structures adaptées)

La démarche commerciale ne s'arrête pas l'organisation commerciale mais doit également s'intéresser aux marchés cibles. Il faut multiplier les secteurs à démarcher, rendu possible par le transport de palettes et de conteneurs.

10/ Développer les systèmes d'information et de communication (outils de suivi, de gestion de la relation client et d'optimisation des flux)

Il est recommandé de déployer les technologies d'information et de communication (traçabilité, sécurité, relation clients ...). La mise en place de ces outils permettra de contribuer aux efforts de modernisation et de renouvellement de la flotte en proposant des services de plus en plus souvent demandés pas les clients :

- Transmission des informations depuis le bateau : éventuel retard, places disponibles, localisation du bateau, horaires de passage, enregistrement des marchandises (à l'image de la messagerie : où se trouve la marchandise ?) ...
- Recevoir les informations en cours de navigation : réservations, état du réseau, accéder aux bourses de fret ...

La mise en place de systèmes d'informations ouverts simplifiera la réservation des moyens ou la commande de place sur des navettes et offre une meilleure visibilité commerciale.

Les échanges d'informations en direct (B2B) permettent une meilleure réactivité (position, chargement, prochaine destination) et facilitera la mutualisation.

L'accès à Internet devrait pouvoir être assuré sur l'ensemble du réseau Freycinet (réseau 3G par exemple) pour communiquer facilement avec les partenaires et clients.

Un chiffrage a été réalisé par VNF pour l'extension de l'accès Internet et AIS au réseau Freycinet.

VI.B.5. REVALORISER LA FILIÈRE (FORMATION)

Besoin identifié	Solution préconisée
→Disposer de personnels qualifiés	
→Envisager des solutions intégrant un maillon fluviales lors de la création et la mise à jour des schémas de transport	11/ Renforcer la formation

11/ Renforcer la formation

Bien que cela ne soit pas mis en évidence directement à travers les scénarios étudiés, il est très important que les décideurs soient bien informés des possibilités offertes par le fluvial, sans a priori, afin d'intégrer cette solutions dans les schémas logistiques. Pour inciter les décideurs logistiques à adopter le report modal, il semble important de développer davantage de formations; la valorisation d'une filière étant indissociable de la diversité et de la qualité de ses formations. Pour répondre à cette problématique, VNF a lancé, en partenariat avec Sup de Co la Rochelle, une chaire intitulée « Optimisation des flux logistiques et transport multimodal » (mise en place pour la rentrée 2012).

POD

« Proposition de nouvelles Organisations de transport combiné par route et fleuve utilisant le réseau Freycinet »

De plus, afin de disposer de personnels formés et qualifiés, il est indispensable de proposer des formations adaptées et attractives, à l'image des formations déjà en place, comme l'Institut supérieur de la navigation ou encore le Centre de formation des apprentis de navigation intérieure (CFANI) mais aussi au travers de formations de nouveau type(tous les cursus d'enseignement sont concernés, de type bac professionnel ou BTS transports jusqu'aux spécialisations en BAC+5).

VI.C. Valorisation du projet

VI.C.1. DES SITUATIONS FAVORABLES AU TRANSPORT FLUVIAL AU GABARIT FREYCINET...

Pour conclure, il apparait très opportun de redynamiser le transport fluvial Freycinet, loin des clichés qui peuvent exister; il existe des cas « nouveaux » où le fluvial apporte une réponse durable, en alternative au transport routier. Il s'agit d'un transport compétitif sur des marchés ciblés, l'objectif n'étant pas de développer ce type de transport sur tous les flux de marchandises mais de s'assurer de sa mise en place lorsque cela est techniquement possible et économiquement pertinent.

VI.C.2. ... **Q**UI ENCOURAGENT À DRESSER LA FEUILLE DE ROUTE DE SON DÉVELOPPEMENT, DÈS À PRÉSENT ...

Pour que le transport Freycinet de développe sur de nouveaux marchés, rapidement, et retrouve une place significative dans le panel des solutions de transport, différentes actions ont été identifiées. Ces préconisations ne sont pas exhaustives mais elles apparaissent comme prioritaires au regard des contraintes et résultats des différents scénarios. Elles pourront être complétées d'autres actions de soutien. Des réflexions approfondies sur l'ensemble de ces axes d'améliorations sont à mener et, en particulier, il sera important de détailler leur mise en œuvre.

VI.C.3. ET METTRE EN PLACE UN TEST GRANDEUR RÉELLE AVANT UNE MISE EN ŒUVRE PLUS LARGE.

Pour aller au-delà de cette analyse et des préconisations de l'étude, la mise en place d'un prototype paraît essentielle, sur la base des scénarios étudiés (cas réel ou prospectifs : avec les chargeurs identifiés ou avec de nouveaux acteurs). La possibilité de disposer de bateaux rapidement rendra cette mise en place plus facile, dont l'industrie française pourra être l'acteur principal et ainsi reprendre place parmi les constructeurs d'unités fluviales dans le paysage européen.

Un projet d'étude et réalisation d'une unité fluviale adaptée insérée dans une chaîne logistique opérationnelle prouvant la faisabilité technique et logistique du concept permettrait également de valider les hypothèses pour démontrer la rentabilité économique et la pertinence du report modal dans certaines configurations.

VII. ANNEXES

VII.A. Acronymes et termes techniques

ACRONYME	SIGNIFICATION				
3G	troisième génération de technologie mobile (dont UMTS est un composant central)				
7'	conteneur 7 pieds				
10' HC	conteneur 10 pieds High Cube (surélevé)				
AIS	Automatic Identification System				
B2B	Business to (2) Business, échanges entre professionnels				
B2C	Business to Consumer, échanges du producteur au consommateur ou client				
CFANI	Centre de Formation des Apprentis de Navigation Intérieure				
CETMEF	Centre d'Études Techniques Maritimes Et Fluviales				
COMPRIS	Consortium Operational Management Platform for River Information Services				
ECDIS	Electronic Chart Display Information Service				
ETP	Équivalent Temps Plein				
EVP	Équivalent Vingt Pieds				
GPS	General Packet Radio Service (norme téléphonie, 2,5 G)				
GPS	système de géo localisation américain par satellites (« Global Positioning System »)				
GSM	Global System for Mobile communication (norme téléphonie, 2G)				
IRIS	Implementation of River Information Services				
ISO	International Standard Organisation				
NTIC	Nouvelles Technologies de l'Information et de Communication				
PTR	Poids Total Roulant				
PTRA	Poids Total Roulant Autorisé				
POD	Proposition de nouvelles Organisations de transport combiné par route et fleuve utilisant le réseau Freycinet				
RFDC	Transmission de données par radio (« Radio Frequency Data Communication »)				
RFID	Radio Frequency Identification				
RIS / SIF	River Information Services ou Services d'Information Fluvial				
UHF	Ultra High Frequency (typiquement pour les radios portables), autour de 460 MHz				
VHF	Very High Frequency radio, bande utilisée pour les talkies-walkies à bord des navires for walkietalkies onboard				
VNF	Voies Navigables de France				
Wi-Fi	«Wireless Fidelity», technologie de réseaux sans fil basée sur les standards IEEE 802.11 a, b, g				
Abri oléo- électrique	Centrale hydraulique permettant de piloter le vérin de vantail et les 2 vérins de vantelle. Il est asservi électriquement par un poste de commande situé à côté				
Bajoyer	Paroi latérale de l'écluse, on parle parfois de mur bajoyer				
Batardeaux	Montants verticaux (aiguilles) ou horizontaux destinés à isoler l'écluse du canal pour permettre				

	les travaux d'entretien
Berge	Talus bordant le lit d'une rivière ou d'un canal. La berge s'étend en principe du niveau de l'étiage jusqu'au niveau auquel de débordement commence
Bief	Portion de canal ou de rivière située entre deux ouvrages (barrages ou écluses)
Bite d'amarrage	En acier moulé, elle sert à fixer à terre les amarres d'un bateau au port ou à l'écluse. On la nomme aussi bollard
Busc	Dénivelé saillant sur le radier de l'écluse et servant à l'étanchéité des vantaux en position fermée. Le fauxbusc est une fourrure fixée aux vantaux, pour permettre l'étanchéité. C'était autrefois une pièce de chêne scellée sur le radier
Chambre des vantaux	Partie de la tête d'écluse où évoluent les portes
Chardonnet	Pièce métallique d'usure du bajoyer sur laquelle s'appuient les portes, faisant fonction de butée et assurant l'étanchéité
Crémaillère	Tige dentelée servant à transmettre un mouvement (montée et descente des vantelles, ouverture et fermeture des vantaux)
Duc d'albe	Pilotis permettant l'amarrage en bief, aux abords d'une écluse ou dans un port
Échelle limnimétrique	Échelle graduée servant à visualiser la hauteur d'eau
EDIFACT	Electronic data interchange for administration, commerce and transport (UN/ECE Standard)
ENC	Electronic navigational chart
Enclave	Les vantaux des portes de l'écluse viennent se loger, lorsqu'elles s'ouvrent, dans ces cavités ménagées dans chaque bajoyer
Entretoise	Pièce horizontale en métal ou en bois formant l'ossature supérieure et inférieure du vantail de porte de l'écluse. Entre les deux entretoises extrêmes sont généralement disposées des entretoises intermédiaires servant à raidir le bordé
Estacade	En amont et en aval de l'écluse, l'estacade d'attente et l'estacade de guidage facilitent la manœuvre des bateaux arrivant à faible vitesse, leur permettant de glisser sur une poutre
ETA	Estimated time of arrival
ETD	Estimated time of departure
Étiage	Niveau des basses eaux
Génie civil	Ensemble des techniques concernant les constructions civiles
Guidage	(ouvrage de) Sur les voies à grand gabarit, on dispose des ouvrages pour faciliter l'entrée des bateaux : les estacades et les murs guides
Largeur utile	Plus petite largeur entre les bajoyers de l'écluse, ou celle des portes ouvertes, si elle est plus faible
Longueur utile	Distance entre les portes, ou plus précisément entre la corde du mur de chute de la porte amont et l'enclave de la porte aval, ou entre les rainures des batardeaux intérieurs
Mouillage	En navigation intérieure, il s'agit de la profondeur disponible pour le bateau, principalement dans un chenal aménagé
Mur de chute	Cette "marche", à l'aval immédiat de la porte amont, rattrape la différence de niveau entre les biefs amont et aval
Mur de garde	Premier mur de chute, après la porte aval

Musoir	Partie arrondie de l'extrémité d'un ouvrage			
Porte d'écluse	On en rencontre de plusieurs sortes : busquée, à vantaux, levante, abaissante, roulante, tournante, secteur à segment cylindrique, selon qu'elles servent au passage des bateaux ou qu'elles servent aussi à l'écoulement des eaux en période de crues			
Porte de garde	En général, une porte de garde se constitue d'une paire de vantaux busqués. Située à l'embouquement ou au débouquement d'un canal de dérivation, elle permet, en fermant les vantaux, de protéger le canal contre la crue de la rivière. Elle permet également, sur les biefs importants, d'isoler une partie du canal et d'éviter ainsi une vidange complète du bief, en cas de rupture de digue par exemple			
Radier	La dalle formant le fond du sas de l'écluse ou d'un ouvrage tel qu'un pont, un barrage,			
Sas	Bassin délimité par les bajoyers et les portes			
SIF	Services d'information fluviale			
Tête d'écluse	L'extrémité de l'écluse supportant les portes			
Vantail	Partie mobile d'une porte. Une porte busquée d'écluse comporte deux vantaux			
Vantelle ou ventelle	Petite vanne en métal ou en bois coulissant dans un cadre et placée sur une porte. La vantel se manœuvre au cric ou par une commande hydraulique ou électrique. Elle peut être glissant glissante à jalousie, tournante ou à secteur			
Vérin	Bras qui permet, par un système hydraulique, l'ouverture des vantaux			

Tableau 45 : glossaire des acronymes et définitions navales

VII.B. Bibliographie

VII.B.1. RAPPORTS ET DOCUMENTATION

- <1> Étude sur le niveau de consommation de carburant des unités fluviales françaises -Efficacités énergétiques et émissions unitaires de CO₂ du transport fluvial de marchandises, ADEME/VNF/TLA (2005)
- <2> Étude sur la recherche et l'innovation dans le domaine de la performance énergétique du transport fluviale de marchandises, VNF/TLA (2009)
- <3> Le transport de marchandises, Observatoire Régional des Transports de Champagne Ardenne (2009)
- <4> Étude sur la connaissance des transports de granulat en Champagne-Ardenne, Observatoire Régional des Transports de Champagne Ardenne/ACT Consultants, 2006
- <5> Étude pour l'optimisation de la logistique en Champagne-Ardenne, CRCI Champagne-Ardenne/CPV (2009)
- <6> Étude préliminaire socio-économique d'une liaison fluviale à grand gabarit entre la Saône et le Rhin, Conseil Général du Haut-Rhin (2009)
- <7> Travaux de la filière bois et de la filière céréalière, notamment concernant l'amélioration des moyens fluviaux (e.g. en termes d'aménagement et d'amélioration de la capacité de la cale)
- <8> Travaux de l'INRETS sur le transport fluvial conteneurisé et l'état des lieux de l'activité du Freycinet
- <9> Étude sur les coûts d'un automoteur Freycinet pour le transport des vrac secs ANTEOR pour le compte du CNT (2005)
- <10> Annexes à l'arrêté du 30 décembre 2008 relatif aux prescriptions techniques de sécurité applicables aux bateaux de marchandises, aux bateaux à passagers et aux engins flottants naviguant ou stationnant sur les eaux intérieures (Journal officiel du 20 mars 2009)
- <11> Le transport fluvial de marchandises MEEDDAT/SESP Les comptes des transports en 2007 (2008)
- <12> Devenir de la flotte Freycinet VNF (1998)
- <13> La navigation sur les voies navigables de petit gabarit en Flandre : opportunités de développement et recommandations politiques AWZ / NV ZEEKANAAL EN WATERGEBONDEN GRONDBEHEER VLAANDEREN / Dienst voor de Scheepvaart (2002)
- <14> Devenir du réseau Freycinet VNF (2007)
- <15> Situation de l'offre Freycinet VNF (2007)
- <16> Perspective d'activité sur le réseau Freycinet : Transport de marchandises VNF (2009)
- <17> Le développement de la logistique fluviale urbaine Port de Paris (2009)
- <18> Les silos sur le réseau Freycinet VNF (2008)
- <19> Horaires d'ouverture des écluses sur les voies navigables du réseau Freycinet
- <20> Chômages 2011 du réseau fluvial VNF (2010)
- <21> Le fluvial, un mode de transport à forte valeur ajoutée Bureau Voorlichting Binnenvaart (2009)
- <22> INLANAV Dossier de presse (2010)
- <23> Strategic Research Agenda for Inland Waterway Transport PLATINA (2010)
- <24> Inventory of IWT education and training institutes and curricula PLATINA (2009)
- <25> Funding guide for inland waterway transport in Europe PLATINA (2008)
- <26> Étude Freycinet 2000 ACT (2001)
- <27> Le développement de la logistique fluviale urbaine Port Autonome de Paris (2009)
- <28> Avis du CNT sur le transport fluvial (2006)
- <29> La maîtrise des « produits dangereux » sur l'ensemble de la chaîne logistique Présentation de l'étude VNF-INERIS (2006)
- <30> Transport des céréales ONIC/VNF (2002)
- <31> Étude sur la recherche et l'innovation dans le domaine de la performance énergétique du transport fluvial de marchandises VNF / TLA / Cabinet Lebéfaude (2009)
- <32> Guide chargeur VNF (2009)
- <33> Revue transport SETRA (2008)
- <34> Étude Eurobois (présentation FCBA)
- <35> Étude INFRAS/IWW (2000)

VII.B.2. PPROJETS DE RECHERCHE ET DÉVELOPPEMENT

- PREDIT III (GO 6)
 - SINATRA: étude de faisabilité du projet de caisses mobiles empilables pour le transport intermodal de marchandises (fleuve / rail) entre le bassin Rhin-Rhur et Lyon-Marseille (collaboration avec DEUFRAKO)
 - SODEMA relatif à la sûreté et au positionnement des berges fluviales
- Framework Program 5 (FP5) et 6 (FP6) de la Communauté Européenne
 - COMPRIS (FP5), visant la mise en place d'un système européen normalisé d'échanges de données de navigation
 - ALSO DANUBE (FP5) avec le développement de nouveaux outils de gestion de l'information et de communication pour les chaînes logistiques utilisant le Danube
 - REALISE (FP5)pour la promotion de technologies propres dans le domaine fluvial, avec le développement de nouveaux outils d'évaluation
 - EMBARC (FP5 DG RTD) qui visait le développement du concept du VTS, et a notamment fourni des recommandations concernant les Systèmes d'Information Fluviaux et l'AIS, et la traçabilité des marchandises
 - CREATING (FP6), avec pour objectif le développement du trafic fluvial, au travers de la mise en œuvre de nouveaux concepts de navire permettant d'accroître la compétitivité du fluvial, la sécurité de la navigation, ainsi que le respect de l'environnement, et a notamment pu développer un navire pilote, ainsi que des outils pour la fabrication des navires
 - MarNIS (FP6 DG TREN) concernant les systèmes et techniques de gestion de l'information, leurs interconnections et leur implémentation dans un souci d'harmonisation, intégrant les aspects « single window », RIS, AIS, inland ECDIS, communication par satellites broadband...
 - o La plateforme Naïades sur les innovations dans le fluvial

VII.B.3. SITES INTERNET

- Lycée Mathis: http://www.lyc-mathisschiltigheim.acstrasbourg.fr/html/fluvial.htm
- http://www.cnam.fr/poleecogestion/article.php3?id article=469
- CFANI : http://cfani.free.fr/marine.htm
- FLUVIA: http://www.fluvia.fr
- Lettre de l'ORT2L n°6 : http://www.ort2l.fr
- Canal Seine-Nord-Europe : <u>www.seine-nord-europe.com</u>
- Voies Navigables de France : <u>www.vnf.fr</u>
- Ministère chargé des transports : www.equipement.gouv.fr
- Conseil National des Transports : www.cnt.fr
- ADEME : www.ademe.fr
- VNF : <u>www.vnf.fr</u>
- CAF: www.caf.asso.fr
- CETMEF: www.cetmef.equipement.gouv.fr
- Ultramarine Encyclopédie de la navigation intérieure européenne : www.schiffchrtslexikon.de
- Commission du Rhin : www.ccr-zkr.org
- Commission de la Moselle : www.moselkommission.org
- HYDRO Banque Nationale de données pour l'hydrométrie et l'hydrologie : http://hydro.rnde.tm.fr/accueil.html

VII.C. Entretiens

VII.C.1. LISTE DES ENTRETIENS EFFECTUÉS

Secteur d'activité	Entreprise	Contact	Responsable	Date
	Entreprise	Contact	Entretien 💌	entretien 🔻
Chargeurs	ARKEMA	Didier BELLON	TLA	09/12/2009
	SITA Région Est	Guy ALBOUI	TLA	15/10/2010
	SAGRAM	Pascal ROHLES	TLA	09/12/2010
Gestionnaire de réseau	VNF	Philippe MAUGE	TLA	26/11/2010
	VNF	Nicolas BRUTIN	TLA	22/10/2010
	VNF Strasbourg	Jean-Laurent KISTLER	TLA	22/12/2010
Organisations professionnelles	CNBA	Michel DOURLENT	TLA	14/12/2010
	CAF	Jean-Raymond LEMOINE	TLA et CETMEF	07/12/2009
	AUTF	Philippe BONNEVIE	TLA	12/02/2010
Chantiers navals	Chantiers de la haute-Seine (CEMEX)	Christian DRAPIER	Lebéfaude	15/12/2010
Architecte naval	Cabinet LEBEFAUDE	Antoine LEBEFAUDE	TLA	21/10/2010
	Overmeer	Cees OOMS	Lebéfaude	21/12/2010
Transporteurs / Armateurs / Opérateurs	CFT	Stéphane FORTRYE	TLA	04/01/2010
	CFT	Bruno KAUFFMANN	TLA	02/11/2010
	Société Coopérative Artisanale de	Mr LIJKO	TLA	15/10/2010
	SIT'Alternatif	Nadia LEMAIRE	TLA	03/11/2010
	Mercurius	Mr ZIMMERMANN	TLA	04/01/2011
Institutionnels / organismes de recherche	ITB (Belgique)	Frédéric SWIDERSKI	TLA	24/11/2010
	Entreprendre pour le fluvial	Antoine MATHOT	TLA	07/12/2010
	MARIN	Henk BLAAUW	TLA	03/01/2011
	Projet WATERTRUCK	Marleen BELLEN	TLA	22/11/2010
	DGITM	Christine LAVARDE	TLA	10/11/2010

VII.C.2. COMPTES-RENDUS D'ENTRETIEN

VII.C.2.a) AUTF

Le gabarit est essentiellement pertinent en cas d'embranchement fluvial des chargeurs, sur le réseau Freycinet.

Le fer risque d'être un concurrent important du Freycinet, dans les années à venir, notamment par le développement des Opérateurs Ferroviaires de Proximité (OFP).

Les chargeurs préfèrent faire des pré et post-acheminements par la route plus longs afin de se rendre directement au port de plus grand gabarit, et ce, afin de réduire leurs coûts.

Il sera nécessaire d'analyser la largeur des écluses sur le réseau Freycinet afin de déterminer la largeur maximale des unités fluviales qu'il serait possible de concevoir et de savoir si deux conteneurs de type 45'PW peuvent être positionnés dans la largeur (problématique des plats bords).

La manutention est une problématique importante qu'il convient d'étudier : les moyens de manutention pour des conteneurs de type 45'PW seront-ils adaptés dans les ports fluviaux, et pour quel coût ? Il serait intéressant de penser à un moyen de manutention directement intégré à l'unité fluviale.

Un autre aspect est la faible capacité d'emport de conteneurs des unités Freycinet, et la nécessité de disposer de conteneurs vides à proximité, ce qui se fait de moins en moins aujourd'hui.

Il est nécessaire de développer une chaîne complète de transport pour pouvoir négocier avec plusieurs clients, c'est-à-dire de mettre en place une organisation logistique, ce que n'ont pas les moyens de faire aujourd'hui les bateliers. Ces derniers seraient alors sous-traitants d'une opérateur.

Concernant les acheminements en ville, il est nécessaire d'avoir un moyen de manutention adapté, discret et rapide. Il serait intéressant de se renseigner auprès de Casino (Franche-Comté), pour savoir comment l'enseigne réalise les approvisionnements du centre de Paris.

VII.C.2.b) CFT (1^{er} entretien)

Vétusté du réseau de canaux (ancien, mal entretenu...) ; son utilisation nécessite le passage de nombreuses écluses, ralentissant, de fait, l'avancée des unités.

Une des problématiques liées à l'utilisation concerne les plats-bords, imposés par la réglementation des deux côtés de la cale. Ces plats-bords, d'environ 60cm de chaque côté, ne permettent une largeur de cale suffisante pour mettre deux séries de conteneurs en largeur, ce qui pénalise le gabarit Freycinet pour le transport de conteneurs (1 seul conteneur en largeur). Une réflexion sur la possibilité de créer des plats bords centraux a été menée il y a 20 ans pour le Canal du Nord, mais celle-ci n'a pas abouti.

Si des équipements de manutention sont embarqués (par exemple, une grue sur rails), il faut prendre en considération le faible tirant d'air du réseau Freycinet (3,5 m par endroits) et penser à la possibilité d'abaisser ces équipements. A titre d'exemple, le « Madagascar » qui transporte des big-bags de ciment sur Paris a des problèmes pour passer sous les ponts lors des crues.

Il serait intéressant de mettre en place un ponton Freycinet pour transporter des conteneurs, ce qui permettrait de s'affranchir de la problématique des plats bords.

Imaginer un concept de convoi poussé composé de plusieurs bateaux Freycinet spécialement conçus pour s'emboîter les uns dans les autres (forme spéciale, moteur amovible...) parait faisable en théorie. Il n'en demeure pas moins un certain nombre de difficultés en termes de logistique et d'opérations de manutention

Cela parait plus réaliste de mettre en place de nouveaux moyens de manutention dans les ports pour un transbordement rapide, efficace et bon marché entre les bateaux provenant du réseau Freycinet et les bateaux de plus grand gabarit.

VII.C.2.c) CFT (2nd entretien)

L'ouverture des canaux et des écluses impose une navigation de jour qui impacte la rentabilité du gabarit Freycinet.

Les réglementations qui pèsent sur les armateurs sont contraignantes, que ce soit au niveau des certificats communautaires, de l'état de la coque, du droit du travail...

Pour le tirage à sec, il faut prévoir d'aller en Hollande ou dans les grands ports maritimes et fluviaux car il n'y a pas de cales sur le réseau Freycinet. Une unité Freycinet demandera plus d'entretien qu'une unité naviguant sur grand gabarit (plus de chocs liés aux passages fréquents aux écluses). Cependant, ces unités sont dispensées d'antifouling car elles ne vont pas en mer.

En imaginant travailler avec plusieurs équipes sur le même bateau (en s'affranchissant de l'organisation en artisan batelier et en allant vers de l'exploitation industrielle), il sera nécessaire mais très difficile d'aménager la cabine afin de faciliter la cohabitation entre les membres d'équipage. Par ailleurs, dans le cas des nouvelles constructions, la suppression de la cabine ne permettrait vraiment de gagner en capacité d'emport, les bateliers n'étant plus installés dans leur bateau. De plus, cette organisation, sans logement sur le bateau, induit un aspect supplémentaire, celui du transport des salariés sur le lieu de travail, avec les coûts qui y sont associés. Cette organisation sans logement à bord présente l'avantage de s'affranchir des congés et de pouvoir faire tourner des salariés toute l'année sur l'unité fluviale.

La création de zones de transbordement aux abords des connections petit / grand gabarit pourrait permettre de limiter l'interdiction par les préfets du transbordement de produits dangereux

L'idée souvent évoquée au Benelux d'organiser des tournées de ramasse à l'aide des unités Freycinet puis de transférer les marchandises sur des unités plus importantes capables d'optimiser la navigation sur les

réseaux à grand gabarit ne paraît pas être adaptée au réseau français. En effet, le réseau français ne présente pas une capillarité suffisante pour ce faire.

La création d'un pousseur et de barges adaptés au réseau Freycinet ne paraît pas pertinente aux interlocuteurs de la société CFT. En effet, il semblerait que la combinaison pousseur + barge fasse perdre de la capacité d'emport.

L'équipement des unités fluviales au gabarit Freycinet par des moyens de manutention embarqués pose la question du tirant d'air et de la stabilité. Les petites unités équipées d'équipements embarqués courent un grand risque de retournement. A noter que les clients sont en général équipés pour le chargement des bateaux. Les systèmes de manutention embarqués paraîtraient plus intéressants dans le cas de la palettisation plutôt que dans le cas de conteneurs.

La livraison parisienne réalisée sur des unités à gabarit Freycinet apparait uniquement comme une action marketing car le transport de déchets par le fleuve est 5 fois plus cher que par camion.

Le fleuve dispose d'un avantage très intéressant dans le cas de la desserte de villes où le réseau routier est saturé telles que Paris (mais problème de quais), Lille, Lyon,... Mais au niveau local, y a-t-il un intérêt économique ?

Par ailleurs, la question des ressources humaines se pose : les jeunes veulent-ils aller travailler sur ce type d'unités (car le passage des écluses est un travail répétitif) ? Et ceux qui y travaillent aspirent en général a des unités plus grandes.

VII.C.2.d) SCAT

Problématique de maintenance et de fiabilisation du réseau Solution en termes d'exploitation : services pendulaires Intérêt du conteneur sur des marchés de niche Nécessité d'attirer des jeunes dans la profession

VII.C.2.e) VNF (1^{er} entretien)

L'étude devrait porter uniquement sur le réseau de 1,80m d'enfoncement autorisé (limite de 250t de port en lourd). Voies en vert clair sur la carte :

- Canal de la Somme
- La Sambre
- Canal de la Sambre à l'Oise
- Canal de Briare
- Canal latéral à la Loire
- Canal de Roanne à Digoin
- Canal du Centre
- Canal du Rhône au Rhin
- Saône
- Canal de Bourgogne
- Canal de Sarre

Aujourd'hui, la flotte est composée d'environ 400 bateaux au gabarit Freycinet, et ils circulent quasiment tous sur les voies fluviales de grand gabarit. Sur le réseau Freycinet, certains endroits sont mieux situés car à la jonction de deux marchés, et suffisamment compétitifs par rapport à la route. Dans le cadre de l'étude POD il sera donc intéressant de travailler sur le critère géographique, et de définir les zones de chalandise pertinentes du Freycinet.

La majorité des allers sont réalisés à vide.

La rentabilité est moins bonne par rapport au camion dans le cadre d'une organisation traditionnelle en tramping : la massification ne joue pas suffisamment vu les volumes, et compte tenu du fait que l'on peut trouver une écluse tous les 3km sur le réseau Freycinet.

L'achat d'un bateau se rentabilise mieux sur le grand gabarit.

Étudier le mode d'organisation sous forme de relais (comme pour les camions), sans couchette

Une deuxième piste d'étude est la logique de darse (liaison petit vers grand gabarit) Enfin, la notion de convoi peut être un troisième axe d'étude, notamment sur des services dédiés

VII.C.2.f) Cabinet Lebéfaude

Les unités fluviales au gabarit Freycinet (comme toutes les autres) doivent être conçues de manière spécifique en fonction de la marchandise transportée et du réseau fréquenté. Il est à noter que la cale actuelle est déjà spécialisée pour le vrac et n'est donc pas adaptée à d'autres trafics. Une unité fluviale polyvalente risque, au final, de n'être performante sur aucun trafic, ni aucun réseau.

L'utilisation d'unité Freycinet pour la livraison urbaine semble judicieuse. Une construction de bateau permettant le chargement et le déchargement de palettes semble possible et pertinente.

L'organisation de la profession peut être pertinente sous plusieurs formes:

- Travail à la journée (chauffeurs routiers / jockeyage)
- Travail à la semaine
- Travail à l'année (tel que pratiqué historiquement par les artisans bateliers)

L'idée de coupler plusieurs unités fluviales au gabarit Freycinet pour navigation sur le grand gabarit semble pertinente

Les équipements potentiellement pertinents dans le cadre de la construction d'unités neuves évoquées lors de l'entretien sont: bras de chargement / déchargement sur l'unité fluviale, timonerie télescopique, plats-bords

La forme de carène et la propulsion ne semblent pas être des sujets prédominants.

La question de la motorisation devra être étudiée. De nombreuses unités Freycinet semblent aujourd'hui « sur-motorisées » par rapport aux vitesses requises et à la consommation en carburant économiquement viables.

VII.C.2.g) DGITM

Le conteneur présente un intérêt dans le cadre d'une desserte ville à ville pour de la livraison urbaine. Les contraintes liées au transport fluvial de conteneurs sont essentiellement liées au tirant d'air (notamment à Paris du fait des ponts). Il n'y a pas d'intérêt à mettre en place un nouveau type de conteneur, néanmoins, sur une unité Freycinet, il n'y pas suffisamment de place en largeur pour pouvoir disposer deux conteneurs...

Il est intéressant d'étudier l'impact du canal Seine Nord Europe pour la région parisienne, sur le transport sur le réseau Freycinet.

La notion de hub est un aspect intéressant à creuser, notamment pour le transport de conteneurs.

Le modèle économique traditionnel du transport sur une unité Freycinet (famille qui vit sur la péniche) permet une flexibilité plus importante (exemple de certains bateliers hollandais avec 2 familles qui alternent sur la même péniche) et n'est pas forcément destiné à disparaître. En effet, les bateliers ne sont pas soumis, en termes d'heures de travail, aux mêmes réglementations que les salariés, car ils sont entrepreneurs.

Penser à la proposition d'une révision des horaires d'ouverture des écluses qui limitent la durée de travail et la compétitivité du transport sur le réseau Freycinet.

Les périodes de chômage sur les voies, liées à leur entretien (réglementairement obligatoire) sont à prendre en compte car cela peut être un frein important à l'établissement d'un service. Sur l'Yonne, la durée de chômage est de 3 mois. Les autres freins identifiés sont les intempéries et les infrastructures.

Des demandes de la part des déménageurs avaient été faites pour réaliser les déménagements par conteneur par voie fluviale.

VII.C.2.h) VIM

Concept de navigation sur le petit gabarit européen (jusqu'à 1500t) : petites barges + petits pousseurs (5x10m)

Proposition d'un mode d'exploitation nouveau, proche de celui du transport routier : le batelier ne dispose plus d'habitation sur la barge, et travaille 8h d'affilée, avant de passer le relais à un autre batelier, et de rentrer chez lui. L'intérêt dans ce mode de fonctionnement serait que les bateliers disposent de leur propre région de navigation et habitent entre le point de départ et le point d'arrivée (8h en fluvial représentent une distance routière maximale de 50 km). Sur le pousseur, il y aurait la place de mettre deux petites voitures et un lit. Un autre intérêt serait également de pouvoir couvrir de longues distances sur le réseau fluvial.

Nécessité d'une harmonisation de la réglementation, que ce soit au niveau des régions ou des Etats, ainsi qu'un changement de la réglementation européenne. En effet, aujourd'hui la législation impose une cuisine dans les péniches. De plus une adaptation de la réglementation serait nécessaire pour ne pouvoir avoir à bord qu'une seule personne (dans certaines régions / pays, plusieurs personnes sont obligatoires).

L'intérêt de pouvoir séparer la barge et le pousseur, et permettre un déchargement et un chargement de la barge à quai, pendant que le pousseur est repositionné. Cet aspect permet de répondre à la problématique des transporteurs routiers face à l'engorgement dans les ports, et leur laisse le temps pour apporter ou récupérer la marchandise.

En moyenne, un pousseur pourra pousser 3 barges, ce pousseur étant fait pour rester sur les petites voies d'eau, et non adapté aux grandes. Par ailleurs, le pousseur pourra pousser de 2 côtés, ce qui pourra faciliter les manœuvres dans les écluses.

Aujourd'hui il est difficile de trouver des personnes qui souhaitent travailler sur les voies de petit gabarit. Il est donc nécessaire d'engager une action sur les ressources humaines qui pourraient travailler selon un nouveau type d'exploitation (pas de vie sur le bateau). Par ailleurs le travail sur les ressources humaines ne s'arrêtera pas au batelier, et devra permettre de réfléchir sur le métier du transporteur routier : doit-on lui proposer de nouveaux services, et notamment la possibilité de charger ou décharger lui-même une barge ?

VII.C.2.i) ARKEMA

Contraintes du transport de marchandises dangereuses.

Transport de matières dangereuses. Le secteur de la chimie implique le transport de matières dangereuses qui nécessite le déploiement de règles de sécurité importantes. Ceci explique en partie le développement de modes alternatifs à la route, considérés comme plus sûrs.

Produits spécifiques. Les produits transportés par Arkéma nécessitent le lavage des moyens de transport entre chaque expédition. Ceci implique aux transporteurs des trajets à vide supplémentaires afin d'aller aux centres de lavage.

Stockages limités. Les produits dangereux impliquent des contraintes importantes en termes de stockages. Ceux-ci ne peuvent être réalisés qu'à des endroits et en des quantités préalablement autorisés.

L'organisation logistique « familiale » des unités Freycinet gérées par des artisans pose la question de la disponibilité 365j/an des unités.

VII.C.2.j) SITA

En octobre 2010, Sita a présenté son concept de déchetterie fluviale temporaire pour les particuliers, une variante de la déchetterie mobile créée en 2008. Installée sur un quai de Boulogne-Billancourt (92), « Ma déchetterie fluviale » est destinée à être en place pendant un ou deux jours, après quoi les déchets sont emmenés par voie fluviale vers un centre de tri.

Pour SITA, les problématiques du gabarit Freycinet concernent :

- Le coût d'exploitation des bateaux pour le tonnage transporté (déchets restent peu denses et très volumineux, réduisant d'autant les tonnages transportés)
- La concurrence forte de la route
- L'utilisation d'unités Freycinet imposée par le réseau (gabarit peu adapté au transport de déchets en termes de coût).

Les problématiques rencontrées par la filière déchets sont essentiellement:

- Les équipements de chargement / déchargement autoportés, qui permettent de charger et décharger depuis les sites non équipés d'engins de manutention et sans attente
- Le conditionnement (doit permettre d'éviter les envols et les nuisances olfactives et d'augmenter les tonnages transportés). En fonction de leur conditionnement (vrac ou conditionné en balle), une unité Freycinet peut ainsi être limitée à 90t ou à 200t, impactant grandement le coût à la tonne.
- La durée de transport.
- La difficulté rencontrée par SITA tient aussi par le manque de visibilité sur les contrats avec leurs clients qui les empêche de s'engager sur des investissements importants.

VII.C.2.k) CAF

Il est possible de naviguer sur certaines voies navigables (dont le réseau Freycinet) avec une seule personne à bord (nouvel arrêté).

Il faudrait penser à un autre modèle que celui de l'exploitation familiale. Il est possible de penser à une exploitation industrielle sans logement à bord, avec logement du personnel à l'hôtel. On peut également imaginer l'utilisation d'un jockey et de convois pour les trajets courts.

VII.C.2.I) EPF

A priori, la demande des chargeurs est réelle, mais il y aurait un problème d'offre, notamment dans l'intégration du transport. Il pourrait être judicieux de contacter Norbert Dentressangles sur cette question, car le groupe serait intéressé par le transport fluvial.

Il est possible de réaliser des économies sur le transbordement depuis le petit vers le grand gabarit, par le biais d'une suceuse (vis sans fin) qui peut être acheté en commun par 20 bateaux. L'intérêt est de pouvoir s'affranchir des silos, et notamment de leurs horaires (fermeture à 15h par exemple).

Il est également possible de faire des économies par l'utilisation d'un tapis roulant directement intégré à la cale, et plus généralement de moyens de manutention embarqués. Par ailleurs, une grue embarquée ne serait a priori pas intéressante.

La palette semblerait être un conditionnement approprié pour le transport fluvial, y inclus le Freycinet, notamment pour la livraison urbaine (marché potentiel).

Le conteneur serait a priori un marché potentiel pour le transport Freycinet. Pour les palettes non gerbables, il est possible d'installer des ponts à l'intérieur des conteneurs.

VII.C.2.m) ITB

Les principaux freins au développement du petit gabarit sont les suivants :

- Concurrence forte par rapport à la route
- Problème d'efficacité
- Volonté des chargeurs

Une problématique importante concerne les coûts de transbordement, qui grèvent la rentabilité du transport. Il est nécessaire de mettre en place des partenariats publics – privés.

VII.C.2.n) Mr Michel

Les clients préfèrent payer plus cher la prestation si le service assuré est de meilleure qualité, avec un matériel aux normes.

L'investissement est un réel problème car sans investissement, c'est la mort du fluvial.

De plus, il y a une pénurie de main d'œuvre ce qui induit des exigences salariales assez élevées (2 500 euros net par mois pour un capitaine, et 1500 euros pour un matelot).

Mr Michel considère que la navigation sur le réseau Freycinet n'est pas du tout rentable (10% de consommation de gazole en plus pour un Freycinet pour transporter la même quantité de marchandise avec un 1500t), et les clients préfèrent effectuer les pré acheminements par la route avant de charger au port sur du plus gros gabarit.

Par ailleurs, un des gros problèmes de ce réseau est son entretien.

MARFRET est en train de réfléchir à la mise en place d'un bateau pour effectuer de la livraison dans Paris. La Plateforme du Bâtiment (Saint-Gobain) souhaite depuis 4 ans, équiper un petit bateau (gabarit Freycinet) avec une grue afin de réaliser les approvisionnements de ses sites à Paris-Austerlitz, et Saint-Denis, sur le canal de Saint-Denis.

VII.C.2.o) SAGRAM

L'autorisation pour exploiter les alluvionnaires sur la commune de Thaon a été obtenue en 2004 -2005, pour une durée initiale de 20 ans. Les granulats extraits doivent ensuite être acheminés vers la plate-forme de broyage qui est située à une distance fluviale de 6km (4 écluses), sur le canal des Vosges (gabarit Freycinet). Une centrale à enrobé est implantée sur le site et s'approvisionne directement avec les matériaux transformés.

La société a fait fabriquer 3 bateaux Freycinet, dans les chantiers de Haute-Seine, pour répondre spécifiquement à la demande de la SAGRAM. La SCAT facture le transport autour de 1 euro la tonne transportée, et les mariniers salariés de la SCAT sont rémunérés à la tonne transportée.

Les 3 bateaux de la SCAT (le Quartz, le Feldspath et le Mica) ont des timoneries placées à l'avant et disposant d'un système de ballastage permettant de passer les ponts et les écluses. Ils sont équipés d'un logement de 12m² avec coin cuisine, WC et banquette-lit.

Ils disposent d'un propulseur d'étrave à l'avant et à l'arrière et de moteurs Volvo Penta. Leur puissance est de 280 cv, et ils consomment peu : entre 18 et 20 litres / h.

Le tirant d'eau est de 2,05m, mais ils ont pu obtenir une dérogation à 2,10m.

Les bateaux ont la capacité de transporter 300t, mais dans les faits, les chargements sont de 265t du fait du profil du canal. Néanmoins, une amélioration sur la quantité transportée est à noter, depuis le curage de 2009 qui a duré 3 à 4 mois.

Les flux de granulats sont d'environ 300 000 t/an, et les ports sont classés au 67ème rang français au regard du tonnage chargé / déchargé.

2 à 2,5 rotations sont effectuées tous les jours de la semaine, et parfois le samedi. Les horaires de travail sont conditionnés par les habitations riveraines et le problème du bruit lors de la chute des granulats dans la cale lors du chargement. Le premier chargement a en général lieu à 7h, et le dernier vers 17-18h.

Les opérations de chargement et de déchargement durent environ 30 minutes. Le temps de navigation est de 2h30 en charge, et de 1h30 lège. Les écluses sont automatisées et actionnées par le marinier.

Au niveau du site d'extraction, le bateau est chargé par le capitaine qui démarre le chargement à partir d'une télécommande. Le chargement s'effectue automatiquement à l'aide d'un bras rotatif. Les bateaux sont connectés via internet au poste d'extraction. Il y a donc une gestion de la quantité de granulats extraits, en fonction de l'arrivée des bateaux. Il n'y a pas d'intervention humaine entre la drague et le stockpile.

VII.C.2.p) VNF (2nd entretien)

C'est un transport en théorie économiquement rentable. En effet, le chiffre d'affaires d'un marinier peut atteindre 120 000 euros/an, sachant qu'une unité Freycinet d'occasion vaut entre 120 et 150 000 euros.

L'enjeu pour le Freycinet est, comme pour le camion, une optimisation du chargement et des charges d'exploitation, notamment pour l'équipage. Sur certaines voies fluviales, des dérogations (ou arrêtés) permettent d'ores et déjà la navigation avec une seule personne à bord. Ces dérogations sont basées sur la capacité physique du marinier (certificat médical), et nécessite d'équiper le bateau avec un propulseur d'étrave.

Un autre aspect à rapprocher du camion est la nécessité d'innover, notamment en termes de motorisation qui doit être :

- Économe : il n'est pas nécessaire d'avoir de gros moteurs, juste de quoi naviguer à 7 ou 8 km/h. Dans les Vosges, les bateaux de la SAGRAM ont une puissance de 164 cv
- Propre (e.g. filtres à particules...)

La route a capté des parts de marché au mode fluvial car elle s'est adaptée. Le fluvial doit évoluer afin de proposer des offres compétitives.

Il est possible de s'affranchir des plats bords par un système de ballasts permettant de gagner 60cm à l'intérieur du bateau. Pour une surface de 200m², 120 tonnes de ballasts sont nécessaires.

Overmeer a développé un système appelé Q-barge pour différentes largeurs (5 ou 5,6m). Il s'agit d'un automoteur équipé d'une cabine de pilotage à l'avant (le moteur est également à l'avant), et qui peut être couplé avec 2, 4, 6 voire 8 unités. La stabilité pour l'emport de conteneur pourrait cependant être problématique...

En termes de technique, le concept de manutention embarquée devra être abordé (cf. cabinet Lebéfaude). Il pourrait notamment être intéressant pour les déchets, en permettant de s'affranchir des coûts qui sont relativement importants quand on fait venir des équipements et du personnel à quai pour la manutention. La solution d'un bras embarqué pouvant se replier à hauteur du niveau de la timonerie serait la moins coûteuse (< 200 000 euros). L'intérêt est de pouvoir recharger directement le bateau, notamment lors de cycles de manutention assez longs.

S'il y a une demande particulière, il est possible de mettre les moyens nécessaires en place sur le réseau Freycinet (ce qui pourrait intéresser les régions, notamment pour le désengorgement des villes). Dans ce cas, un bilan socio-économique est réalisé pour comparer les coûts de la rénovation aux gains liés aux tonnages transportés. La mise en œuvre des moyens nécessaires dépend donc de cette adéquation.

Plusieurs solutions peuvent se présenter pour le Freycinet selon le type de navigation:

- Navigation sur zone courte : intérêt du pilotage avec une seule personne à bord.
- Navigation sur zone longue : système de relais (tous les 100 km, par exemple) avec possibilité de propulsion avant.
- Livraison urbaine.

Plusieurs solutions peuvent être envisagées pour le Freycinet selon le type de marché et de contenant:

- Conteneur,
- Vrac,
- Palettes,
- Big bag,
- Balles compactées (notamment pour les produits recyclés : plastique, papiers...),
- Cubes,
- ...

Le bateau doit pouvoir s'adapter aux différents types de marchandises qu'il sera possible de transporter. On peut évoquer l'exemple de Touax, qui propose du matériel de location, et qui pourrait disposer d'une série de bateaux assez rustiques. A cette cale standard mise en location pourraient s'ajouter des unités disposant d'options supplémentaires.

Concernant le transport de conteneurs, le cabinet d'architecture navale HT2 a travaillé sur le dimensionnement d'une barge Freycinet destinée au transport de déchets par conteneurs, sur la CUS. Cela reste complexe, notamment pour la stabilité et le chargement du bateau. La capacité d'emport est de 20 conteneurs (2 x 10). Ce bateau ne dispose pas de plats bords (passage sur les conteneurs et système d'encoches gravées dans les murs de la coque, qui permettent de descendre dans la cale). Pour cela une dérogation doit être obtenue auprès de la CCNR, chose qui n'a pas encore pu être faite.

Concernant les horaires des écluses, il est possible d'envisager des améliorations, mais limitées (e.g.sur une longue distance avec seulement 2 écluses). En effet, le 24h/24 sur le réseau Freycinet ne sera pas possible.

VII.C.2.q) CNBA

L'intérêt du transport sur un bateau Freycinet est logistique, car il est possible d'effectuer de la longue distance (Marseille - Bratislava par exemple) et de transporter des marchandises volumineuses (éoliennes par exemple). De plus, les infrastructures du réseau existent déjà. Dans le cas de la longue distance, la notion de stock flottant est à considérer. Ce type d'organisation de transport, sur de la longue distance,

n'est viable que s'il est effectué par un batelier indépendant, ce qui n'est pas possible lorsqu'il s'agit d'employés salariés.

Le transport de conteneurs parait assez problématique car la cale ne fait que 25m de long. Le conteneur demeure néanmoins une marchandise porteuse, mais peu s'y risquent en Freycinet aujourd'hui. Pour le transport de conteneurs, il est nécessaire d'avoir la timonerie à l'avant afin de disposer de la visibilité suffisante. Par ailleurs, il est nécessaire de toujours avoir un plan de rechange pour les bateaux afin d'avoir la possibilité de s'adapter aux différents marchés.

Les bateaux de petit gabarit présentent un intérêt pour la livraison en ville des palettes. Dans les années 80, un test a été effectué pour Saupiquet avec une flotte de 9 Freycinet, entre Péronne et Palavas-les-Flots. Sur ces 9 bateaux, un seul était équipé d'une grue, ce qui permettait de réduire les coûts, mais celui-ci pouvait charger et décharger les autres bateaux.

Le transport à gabarit Freycinet aura une importance dans la cadre de la création du Canal Seine Nord Europe (CSNE) car il permettra d'effectuer le brouettage des céréales, depuis la région Champagne-Ardennes.

Un Freycinet neuf coûte aux environs de 500 000 euros. Un Freycinet d'occasion coûte de 100 à 200 000 euros, ce qui laisse la possibilité à des jeunes d'investir.

L'investissement dans un Freycinet est moins risqué que pour un gabarit plus important car il est possible d'aller sur tous les réseaux et de reprendre un marché ailleurs (en Belgique, en Hollande,...).

Aujourd'hui, il est possible de réaliser des emprunts sur 10 ou 15 ans. A l'époque, lorsque la SRPF a sorti la série des Freycinet Strasbourg, les emprunts ont été faits sur 30 ans, ce qui est un modèle intéressant.

En ce qui concerne l'entretien de timoneries télescopiques, de moteurs électroniques ou de radars (pour la grosse cale), il est nécessaire d'aller en Hollande, ou de faire venir un hollandais. En effet, en France on ne dispose pas forcément des bonnes compétences. Il y a un réel besoin de formation dans les métiers connexes au fluvial.

Le projet Freycinet 2000 a proposé un ponton de faible tirant d'eau, équipé d'une grue, et dédié au transport de conteneurs. La capacité d'emport était de 11 conteneurs (sur une seule hauteur). Ce projet n'a pas abouti car un choix a été fait de plutôt favoriser la construction des bateaux de la SCAT.

La CNBA a fait réaliser en 2007 des plans pour la construction de trois gabarits de bateaux, dont un au gabarit Freycinet pour un tirant d'eau de 2,3m et un tirant d'air de 3,5m. La construction d'une unité a été évaluée à 500 000 euros, pour une coque fabriquée dans les pays de l'Est, et finie en Hollande. L'équipement de ces unités est : propulseur d'étrave, timonerie télescopique, panneaux de cale coulissant sur rail, ancre sur câble (moins de poids qu'une ancre classique), et grue. Il peut y avoir un intérêt à placer la grue à l'avant du bateau et poser les voitures sur les panneaux de cale quand celle-ci est pleine, ou en fond de cale quand le bateau est lège.

VII.C.2.r) MARIN

Les bateaux devraient être capables de transporter autant de marchandises que possible, et plus les distances sont importantes, meilleur est le transport. Par ailleurs, le transport quai à quai est le plus favorable (pas de pré ou post acheminement).

Si la marchandise est transportée en conteneurs, la taille de ceux-ci doit coïncider avec la taille maximale des conteneurs autorisés à être transportés sur la route (45' de long) et palletwide (2,44m de large). Pour les bateaux, la longueur des conteneurs pourrait être de 45'/2, soit 6,77m. Au total, sur une barge avec pousseur, il est possible de transporter 10 conteneurs (formant ainsi 5 conteneurs 45' PW).

Les contraintes les plus importantes sont relatives aux coûts de manutention des conteneurs, ou, dans le cas de palettes, les coûts de manutention des palettes.

MARIN a étudié le concept BargeTruck, que ce soit au niveau de la faisabilité ou de l'optimisation technique. Ce concept consiste à la combinaison de pousseurs et de barges. Ce projet concerne les voies d'eau de classe II (500 – 700t), pour des barges de longueur 50m, de largeur 6,7m, un tirant d'eau de 2,8 à 2,8m, et un tirant d'air de 4,3m.En termes de marché, le transport de vrac (nourriture pour animaux) et de déchets d'ordures ménagères par conteneur ont été étudiés.La capacité d'emport est de 28 conteneurs 20'.La vitesse de croisière prise en compte est de 13 km/h, et la motorisation proposée est de type gaz-

électrique, avec deux moteur de 250KW. La puissance de propulsion est de 2 fois 225KW. En termes d'équipement de manœuvre, une pompe à jet est prévue à l'avant du bateau. En termes de coût, il faut compter 800 000 euros pour le pousseur, et 300 000 euros pour chacune des barges.

Nécessité d'une organisation privée pour les pousseurs, mais une coopération pour les barges: plusieurs mariniers peuvent collaborer et créer ensemble un pool de barges. Le transport des barges (par le pousseur) peut être effectué par une compagnie de transport fluvial.

Une innovation intéressante concerne l'amélioration de l'efficacité du chargement et du déchargement du bateau en donnant la possibilité aux mariniers de manutentionner les grues, par un système d'automatisation. Un des aspects important et qui doit être pris en compte dès le début, est le fait que le bateau doit permettre de mixer différents types de cargaisons.

VII.C.2.s) Mercurius

Aujourd'hui, les nouveaux bateaux construits par Mercurius ne sont pas compétitifs en termes de prix seul par rapport à la flotte ancienne déjà rentabilisée. Les coûts d'investissements (200.000€ pour un bateaux d'occasion, 800.000€ pour un bâtiment neuf) grèvent les prix.

Mercurius développe donc des bateaux répondant à des critères environnementaux stricts pour axer son argumentaire. Les nouveaux bateaux développés par Mercurius sont équipés de systèmes de réduction des NOx basés sur la technologie SCR.

Le groupe Mercurius s'attend cependant à la disparition des anciens bâtiments pour des raisons: de retraite des capitaines et de coûts de mise aux normes (législations CCNR de plus en plus drastique et coût liés à la mise aux normes trop important par rapport au coût du bateau). Les nouveaux bateaux de Mercurius pourraient ainsi trouver plus facilement leurs clients une fois les anciens bateaux disparus.

Pour M. Zimmerman, les problématiques essentielles à régler sont celles des investissements et des financements. Les questions technologiques peuvent facilement être résolues. Le groupe MERCURIUS considère par ailleurs que les gouvernements pourraient aider les transporteurs qui utilisent des technologies permettant de réduire les impacts sur l'environnement.

M. Zimmerman considère qu'il faut standardiser les nouveaux bateaux pour qu'ils puissent s'adapter aux marchés. Les nouveaux bateaux construits sont ainsi équipés pour transporter à la fois des conteneurs et du vrac.

VII.C.2.t) Chantiers navals de la Haute Seine

Les Chantiers de la Haute Seine sont les derniers chantiers Français à avoir construit des unités « Freycinet » neuves. Ceci dans le cadre d'un projet très spécifique, nécessitant des bateaux eux-aussi très spécifiques. Les Chantiers de la Haute Seine sont peu consultés pour la construction d'unités « Freycinet » neuves. Les consultations portent sur des unités très spécialisées.

Le prix de construction apparait comme étant le principal obstacle à l'aboutissement des projets.

VII.C.2.u) Overmeer

La société Overmeer utilise majoritairement et quotidiennement le réseau Freycinet dans le cadre de ses activités, ceci représentant un volume de 150 000 tonnes de marchandises par an sur le réseau Français. Le principal problème est de trouver des unités Freycinet dont les cales répondent aux normes en vigueur concernant l'hygiène (transport de céréales), ceci menant cette société vers une réflexion sur la construction d'unités neuves.

Le transport de conteneurs parait mal adapté à la société Overmeer aux contraintes du réseau Freycinet.

VII.D. Données techniques des bateaux étudiés et modélisés

VII.D.1. STABILITÉ DU PORTE-CONTENEURS 20 PIEDS

I. Rappel de la réglementation, chapitre 22 de l'arrêté du 30 décembre 2008

<u>Article 22.02</u>: conditions limites et mode de calcul pour la justification de la stabilité en cas de transport de conteneurs non fixés

- 1) La stabilité doit être conforme aux conditions suivantes :
 - a. La hauteur métacentrique MG ne doit pas être inférieure à 1 m
 - b. Sous l'action conjuguée de la force centrifuge résultant de la giration du bateau, de la poussée du vent et des surfaces libres occupées par de l'eau, l'angle d'inclinaison ne doit pas être supérieur à 5° et le coté du pont ne doit pas être immergé.
 - c. Le bras d'inclinaison résultant de la force centrifuge due à la giration du bateau doit être déterminé selon la formule :

$$hkz = ckz.\frac{v^2}{Lwl}.(KG - \frac{T'}{2})$$

d. Le bras de levier d'inclinaison résultant de la poussée du vent doit être déterminé selon la formule :

$$hkw = ckw.\frac{A'}{D'}.(lw + \frac{T'}{2})$$

e. Le bras de levier d'inclinaison résultant des surfaces libres exposées à l'eau de pluie et aux eaux résiduaires à l'intérieur de la cale doit être déterminé selon la formule :

$$hkfo = \frac{ckfo}{D'}$$
. (b. l. (b - 0.55 \sqrt{b})

2) La stabilité du bateau est considérée comme suffisante lorsque la KG effective est inférieur ou égale à la KGzul résultant de la formule suivante :

$$KGzul = \frac{KM + \left(Z.\frac{T}{2} - hkw - hkfo\right).\frac{Bwl}{2F}}{1 + Z.\frac{Bwl}{2F}}$$

Ou
$$KGzul = KM - 1$$

La plus petite des valeurs de kg est déterminante.

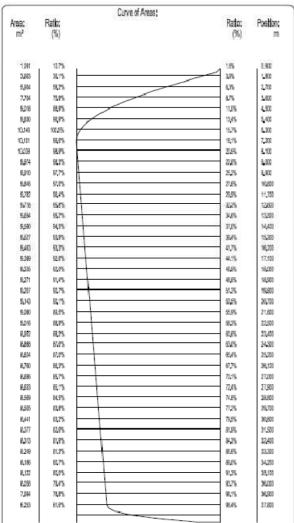
<u>Article 22.02</u>: conditions limites et mode de calcul pour la justification de la stabilité en cas de <u>transport de conteneurs fixés</u>

- 1) Dans le cas de conteneurs fixés, tout mode de calcul appliqué pour déterminer la stabilité du bateau doit être conforme aux conditions limites suivantes :
 - a. La hauteur métacentrique ne doit pas être inférieure à 0.5 m
 - b. Sous l'action conjuguée de la force centrifuge résultant de la giration du bateau, de la poussée du vent et des surfaces libres occupées par de l'eau, aucune ouverture de coque ne doit être immergée.

2) La stabilité du bateau chargé de conteneurs fixés est considérée comme suffisante lorsque la KG effective est inférieur ou égale à la KGzul résultant de la formule suivante :

$$KGzul = \frac{KM - \frac{I-i}{2V} \left(1 - 1.5 \frac{F}{F'}\right) + \left(Z.\frac{T}{2} - hkw - hkfo\right)}{1 + 0.75.Z.\frac{Bwl}{2F}}$$

Ou


$$KGzul = KM - 0.5$$

La plus petite des valeurs de kg est déterminante

II. Résultats

Les résultats présentés correspondent aux deux cas d'exploitation extrêmes possibles du bateau, avec des cas de chargement qui permettent de passer les critères de stabilité.

- Premier cas : navigation avec seulement 30 tonnes de marchandises repartie dans les conteneurs de la première couche

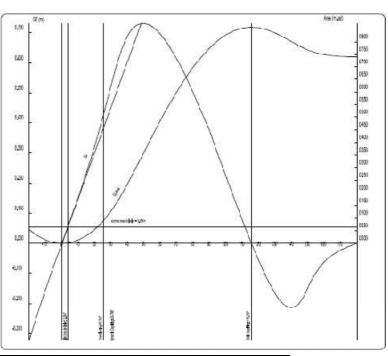


Figure 46 : courbe des aires (à g.) et stabilité transversale (à dr.) pour le porte-conteneurs 20' chargé à 30 tonnes

- Deuxième cas : navigation avec 136.8 tonnes de marchandises, 88.8 tonnes dans la première couche, et 48 tonnes dans la seconde.

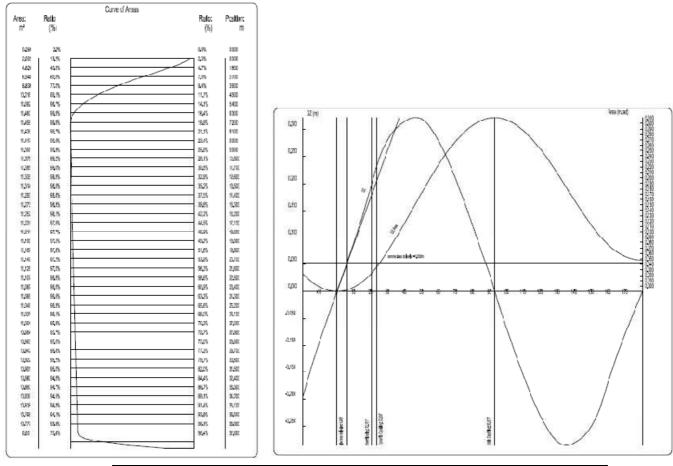


Figure 47 : courbe des aires (à g.) et stabilité transversale (à dr.) pour le porte-conteneurs 20' chargé à 136.8 tonnes

	20 pieds chargés 2		
3) KG zul pour transport des conteneurs non fixés	couches	20 pieds lège 2 couches	
KM	2,11	2,13	
Bwl	5,05	5,05	
franc bord F	0,89	1,1	
Z=0,04*v²/Lwl	0,03	0,03	
C=Bwl/(2F)	2,84	2,30	
KG zul= $(KM+C*(Z*T/2-hkw-hkfo))/(C*Z+1)$	1,53	1,45	
KG zul=KM-1	1,11	1,13	
4) KG zul pour transport des conteneur fixés			
Bwl	5,05	5,05	
creux H (m)	2,5	2,5	
volume q (m3)	8,69	8,69	
H'=H+(q/(0,9L*Bwl))	2,55	2,55	
franc bord idéal F'=H'-T	0,35	0,55	
deplacement d'eau m3 V	398	325	
I=(Bwl ² *V)/((12,7-1,2*T/H)*T)	396,2	353,0	
i=T+2/3*F'	2,43	2,37	
W=Bwl/F'	14,45	9,19	
Bwl/F' ne peut pas etre ≤ à 6,6	6,6	6,6	
Y=((I-i)/(2V))*(1-1,5F/F')	-1,40	-1,08	
Y ne peut pas être ≤ à 0	0	0	
KG zul=(KM-Y+0,75*W*(Z*T/2-hkw-hkfo))/(0,75*W*Z+1)	1,820	1,792	
KG zul=KM-0,5	1,61	1,63	
Conclusion			
GM≥1	non	non	
GM≥0,5	oui	oui	
gite induite par la somme des bras de levier ≤ 5°	oui	oui	
KG ≤ KG zul pour transport de conteneurs non fixés	oui	oui	
KG ≤ KG zul pour transport de conteneurs fixés	oui	oui	
conteneurs fixés/non fixés	fixé	fixé	

Tableau 46 : stabilité du porte-conteneurs 20'

VII.D.2. STABILITÉ DU PORTE-CONTENEURS 7 PIEDS ET 10' HIGH CUBE

	10 pieds HC vides	10 pieds HC chargés	7 pieds vides, 1 couche	7 pieds vides, 2 couches	7 pieds chargés, 1 couches	7 pieds chargés, 2 couches
GM	3,33	1,13	3,14	2,08	1,206	0,506
1) giration du bateau						
Ckz	0,04	0,04	0,04	0,04	0,04	0.04
v (m/s)	5,14	5,14	5.14	5.14	5.14	5.14
Lwl	38,7	38,7	38,7	38,7	38,7	38,7
KG	1,23	1,43	1,15	1,56	1,15	1,58
tirand d'eau T	0,54	1,05	0,6	0,7	1,3	2
hkz=Ckz*v²/LwI*(KG-T/2)	0,0262	0,0247	0,0232	0,0330	0,0137	0,0158
2)poussée du vent	1					
Ckw	0,025	0,025	0,025	0,025	0,025	0,025
surface de fardage latérale (m²) A	104	86	101,7	99	77	49,9
déplacement du bateau D (t)	81,5	178,9	90,31	108	211	355
hauteur og fardage par rapport à l'eau lw	1,45	1,15	1,4	1,3	1	0,7
hkw=Ckw*A/D*(lw+T/2)	0,0549	0,0201	0,0479	0,0378	0,0151	0,0060
3)carène liquide des eaux de pluie						
Ckfo	0,015	0,015	0,015	0,015	0,015	0,015
largeur de la cale b	5	5	5	5	5	5
longueur de la cale l	28,25	28,25	28,25	28,25	28,25	28,25
hkfo=Ckfo/D*(b*I*(b-0,55vb))	0,0980	0.0447	0,0885	0,0740	0,0379	0,0225
somme des bras de levier	0,1791	0,0895	0,1595	0,1448	0,0666	0,0443
gite induite par la somme des bras de levier	3,07	4,49	2,96	3,9	3,15	4,97
3) KG zul pour transport des conteneurs non fixés						
KM	4,56	2,56	4,29	3,61	2,35	2,08
BWI	5,05	5,05	5,05	5,05	5,05	5,05
franc bord F	1,95	1,45	1,89	1,8	1,19	0,5
Z=C,O4*v²/Lwl C=Bwl/(2F)	0,03 1,29	0,03 1,74	0,03 1,34	0,03 1,40	0,03 2,12	0,03 5,05
KG zul= (KM+C*(Z*T/2-hkw-hkfo))/(C*Z+1)	2,20	1,51	2,14	1,85	1,48	1,57
KG zul=KM-1	3,56	1,56	3,29	2,51	1,35	1,08
4) KG zul pour transport des conteneur fixés	-,		-,	-,	-,	_,
Bwl	5,05	5,05	5,05	5,05	5,05	5.05
creux H (m)	2,5	2,5	2,5	2,5	2,5	2,5
volume q (m3)	8,69	8,69	8,59	8,59	8,69	8,69
H'=H+(q/(0,9L*Bwl))	2,55	2,55	2,55	2,55	2,55	2,55
franc bord idéal F'=H'-T	2,01	1,50	1,95	1,85	1,25	0,55
deplacement d'eau m3 V	81,5	178,9	90,31	108	211	355
I=(Bwl ² *V)/((12,7-1,2*T/H)*T)	309,4	356,3	309,3	318,2	342,8	385,6
i=T+2/3*F'	1,88	2,05	1,90	1,93	2,13	2,37
W=BwI/F'	2,51	3,37	2,59	2,73	4.04	9,19
Bw /F' ne peut pas etre ≤ à 6,6	6,6	6,5	6,6	6,6	6,6	6,6
Y=([I-i)/(2V])*(1-1,5F/F')	-0,86	-0,45	-0,77	-0,67	-0,35	-0,20
Y ne peut pas être ≤ à 0	0	0	0	0	0	0
KG zul=(KM-Y+0,75*W*(Z*T/2-hkw-hkfo))/(0,75*W*Z+1)	3,383	2,035	3,220	2,734	1,917	1,744
KG zul=KM-0,5	4,06	2,06	3,79	3,11	1,85	1,58
Conclusion						
GM≥1	oui	oui	oui	oui	oui	non
GM≥0.5	oui	oui	oui	oui	oui	oui
gite induite par la somme des bras de levier ≤ 5°	oui	oui	oui	oui	oui	oui
KG ≤ KG zul pour transport de conteneurs non fixés	oui	oui	oui	oui	oui	non
KG ≤ KG zul pour transport de conteneurs fixés	oui	oui	oui	oui	oui	oui
conteneurs fixés/non fixés	non fixés	non fixés	non fixés	non fixés	non fixés	fixés

Tableau 47 : stabilité du porte-conteneurs 7' et 10' HC

VII.D.3. STABILITÉ DU PORTE-PALETTES

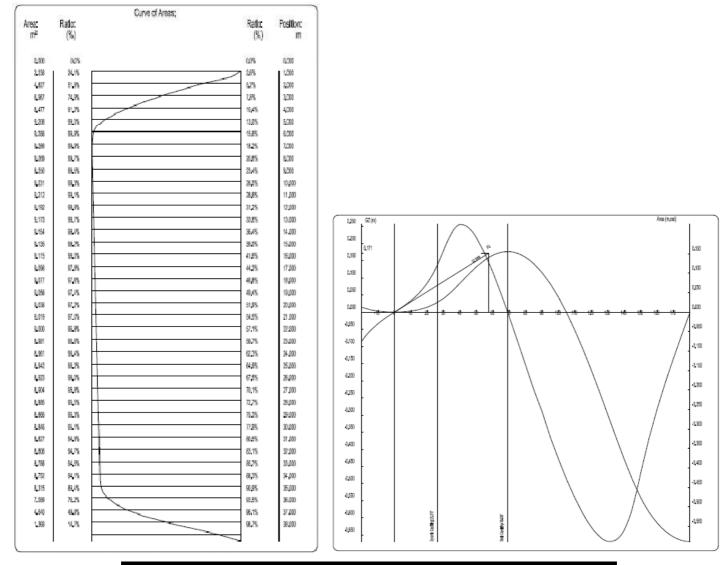


Figure 48 : courbe des aires (à g.) et stabilité transversale (à dr.) pour le porte-palettes avec un tirant d'eau de 1,8m

VII.E. Détail des scénarios d'évaluation

Projet POD - étude des coûts SCENARIO 1 TLA - Rapport final

PRESENTATION SCENARIO 1

TRANSPORT DE CONTENEURS EN COURTE DISTANCE

Déchets conteneurisés (sens 1) et retour conteneurs vides (sens 2) Construit à partir de l'exemple SITA + CUS

CHIFFRAGE FLUVIAL

AMORTISSEMENT

INVES	TISSEMENT (EUR)	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Prix achat UNITAIRE (€)	DUREE Amortisst (années)	TX de SUBVENTION
FLUVIAL	automoteurs	4	3	510 000 €	30	39%
ROUTIER	benne	3	3	120 000 €	15	
KOOTIEK	plateau	6	3	100 000 €	15	
UTI	conteneurs 7'	669	-	2 500 €	20	20%
011	conteneurs 10'HC	-	211	3 000 €	20	20%
MANUTENTION ET	reachstacker	2	2	350 000 €	15	25%
PREPARATION	chariot	8	4	200 000 €	15	25%
	compacteur	2	2	60 000 €	20	20%
CONTENEURS	station lavage	4	2	12 000 €	5	20%
Aménagements	STRASBOURG	1	1	3 000 000 €	50	20%
portuaires	VENDENHEIM	1	1	1 000 000 €	50	20%

TOTAL

scénario 7'

11 140 500 €

8 467 000 €

Barge en rotation 24h/24, courte distance => pas de logement nécessaire

Hypothèse : durée d'emprunt = durée d'amortissement

(1) = subv de 20% de la différence fluvial / route

(2) = 200 000 € /bateau et également -100 000 € d'études (1x)

TAUX D'INTERET 2% possible d'obtenir une avance remboursable (non pris en compte)

		SANS SUBVI	ENTION /an	AVEC SUBVI	ENTION /an
AMORTISSEMENT (EUR /an)		Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC
FLUVIAL	automoteurs	91 086 €	68 314 €	52 033 €	38 191 €
ROUTIER	benne	28 017 €	28 017 €	28 017 €	28 017 €
KOUTIEK	plateau	46 695 €	23 348 €	46 695 €	23 348 €
UTI	conteneurs 7'	102 285 €	-	81 828 €	
011	conteneurs 10'HC	-	38 712 €	-	30 970 €
Manutention et	reachstacker	54 478 €	54 478 €	40 858 €	40 858 €
préparation	chariot	124 521 €	62 260 €	93 391 €	46 695 €
conteneurs	compacteur	7 339 €	7 339 €	5 871 €	5 871 €
conteneurs	station lavage	10 184 €	5 092 €	8 147 €	4 073 €
Aménagements	STRASBOURG	95 470 €	95 470 €	76 376 €	76 376 €
portuaires	VENDENHEIM	31 823 €	31 823 €	25 459 €	25 459 €
	TOTAL /an	591 897 €	414 853 €	458 674 €	319 858 €
			SUBV.	-133 223 €	-94 995 €

EXPLOITATION

			NBRE d'unit	és d'œuvre	COUT TO	TAL /an
	FLUVIAL (automoteurs) MOYENS EN PROPRE		Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC
	carburant (€/litre)	0.74 €	41 400	62 100	30 636 €	45 954 €
	Lubrifiant (% de carburant)	7%	-	-	2 145 €	3 217 €
	Entretien (% de carburant)	15%	-	ı	4 595 €	6 893 €
	Assurances	10 000 €	4	3	40 000 €	30 000 €
	Impôts et taxes	15 000 €	4	3	60 000 €	45 000 €
AUTOMOTEUR	Remplacement personnel	5 000 €	4	3	20 000 €	15 000 €
AUTOMOTEUR	Maintenance et travaux	10 000 €	4	3	40 000 €	30 000 €
	Salaire batelier	36 000 €	4	3	144 000 €	108 000 €
	taxe d'accès (/accès)	36.54 €	4 000	6 000	146 160 €	219 240 €
	taxe navigation (€/caisse*)	2€	76 000	24 000	152 000 €	48 000 €
	Frais de gestion	5%	-	-	31 977 €	27 565 €
	Marge si sous-traitance	0%	-	-	0€	0€
	* = vides ou pleines			TOTAL /an	671 513 €	578 869 €

taxe 0,784€/1000t.km ou 2 €/conteneur (idem 20') ?

TOTAL /an

Scénario
Conteneurs 7'

SUBVENTION COUP DE PINCE (15€ changt modal, hors dépotage)

Certificat Eco Energie (CEE) (0,3c€/kWh économisés avec 1 litre gasoil = 10,6 kWh)

TOTAL /an

Scénario
Conteneurs 7'

10'HC

-2 280 000 €
-720 000 €
-720 000 €
-720 48 €

conteneurs vides et pleins

			NBRE d'uni	tés d'œuvre	COUT TO	TAL /an
ROUTIER (pré- et post- acheminements) MOYENS EN PROPRE		COUT UNITAIRE	Scénario Scénario Conteneurs 7' 10'HC		Scénario Conteneurs 7'	Scénario Conteneurs 10'HC
	coût kilométrique (€/km)	0.684 €	14 500	14 500	9 918 €	9 918 €
BENNE	ECO TAXE (€/km)	0.140 €	14 500	14 500	2 030 €	2 030 €
DEININE	coût horaire (€/h)	17.84 €	4 075	4 075	72 698 €	72 698 €
	frais fixes (€ /an)	35 000 €	3	3	105 000 €	105 000 €
	coût kilométrique (€/km)	0.575€	255 500	106 000	146 913 €	60 950 €
PLATEAU	ECO TAXE (€/km)	0.140 €	255 500	106 000	35 770 €	14 840 €
PLATEAU	coût horaire (€/h)	20.33 €	10 600	3 850	215 498 €	78 271 €
	frais fixes (€ /an)	40 000 €	6	3	240 000 €	120 000 €
				TOTAL /an	827 827 €	463 707 €

			NBRE d'unités d'œuvre		COUT TOTAL /an	
EQUIPEMENTS		COUT UNITAIRE	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC
Manutention et	reachstacker (€/h)	40 €	9 600	3 300	384 000 €	132 000 €
préparation	chariot (€/h)	38€	22 400	7 080	851 200 €	269 040 €
preparation	compacteur (€/chargt)	1.3 €	68 000	21 500	88 400 €	27 950 €
				TOTAL /an	1 323 600 €	428 990 €

PERSONNEL

		NBRE d'unités d'œuvre		COUT TOTAL /an		
FRAIS DE PERSONNEL SUR SITES COUT UNITA		COUT UNITAIRE	Scénario 7'	Scénario 10'HC	Scénario 7'	Scénario 10'HC
Main d'œuvre sur	caristes (€/ETP)	196€	4 600	1 500	901 600 €	294 000 €
sites	agents (€/ETP)	154 €	1 250	675	192 500 €	103 950 €
sites	chef de site (€/ETP)	252 €	500	500	126 000 €	126 000 €
				TOTAL /an	1 220 100 €	523 950 €

BILAN ECONOMIQUE

		SANS SUBVE	NTION /an	<u>AVEC</u> SUBVI	ENTION /an
		Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC
AMORTISSEMENT		591 897 €	414 853 €	591 897 €	414 853 €
SUBVENTION AMOR	TISSEMENT	-	-	-133 223 €	-94 995 €
EXPLOITATION FLUV	IALE	671 513 €	578 869 €	671 513 €	578 869 €
EXPLOITATION ROUT	ΓE	827 827 €	463 707 €	827 827 €	463 707 €
EXPLOITATION EQUI	PEMENTS	1 323 600 €	428 990 €	1 323 600 €	428 990 €
FRAIS DE PERSONNE	L	1 220 100 €	523 950 €	1 220 100 €	523 950 €
SUBVENTION EXPLO	ITATION (coup de pince + CEE)	=	-	-2 282 633 €	-723 748 €
	TOTAL	4 634 936 €	2 410 369 €	2 219 080 €	1 591 625 €
	SUBVENTION	-	-	2 415 856 €	818 743 €
	NBRE CONTENEURS	68 000	21 500	68 000	21 500
	conversion en EVP	11 750	11 750	11 750	11 750
	NBRE TONNES	104 070	104 070	104 070	104 070
	COUT €/conteneur	68 €	112 €	33 €	74€
	COUT €/EVP	394 €	205 €	189 €	135 €
	COUT €/tonne	45 €	23 €	21 €	15€

Différence de coût importante entre solution 7' et 10'HC (chargement max atteint en volume et non en masse)

Solution 7' oblige à multiplier les manutentions et augmente le temps de chargement de manière très importante avec 1 bateau en plus /sens

EVALUATION ENVIRONNEMENTALE

		CON	CONSO EMISSIONS DE CO2 (tonne		
EMISSIONS CO2	Facteur d'émissions (kg eq CO2 / litre)	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC
FLUVIAL	2.95	41 400	62 100	122.1	183.2
ROUTIER	2.95	101 493	45 730	299.4	134.9
			TONNES CO2	421.5	318.1

Données coûts externes transports		oré- et post- nements)	FLUVIAL	
Congestion	2.50€	€/veh.km	0€	
Accidents	0.043 €	€/veh.km	0€	
Pollution atmosphérique	0.058 €	€/veh.km	6.05€	€/barge.km
Bruit	0.011 €	€/veh.km	0€	
Changement climatique	0.016 €	€/veh.km	0.56€	€/barge.km
Amont/Aval	0.0187€	€/veh.km	0.52 €	€/barge.km

	ROUTIER (Unités d'œuvre)		FLUVIAL (Uni	tés d'œuvre)	COUTS EXTERNES	
	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC
Congestion	270 000	120 500	0	0	675 000 €	301 250 €
Accidents	270 000	120 500	0	0	11 610 €	5 182 €
Pollution atmosphérique	270 000	120 500	34 200	51 300	222 570 €	317 354 €
Bruit	270 000	120 500	0	0	2 970 €	1 326 €

Projet POD - étude des coûts SCENARIO 1 TLA - Rapport final

Changement climatique	270 000	120 500	34 200	51 300	23 472 €	30 656 €
Amont/Aval	270 000	120 500	34 200	51 300	22 833 €	28 929 €
			Total coûts ext. (€		958 455 €	684 696 €
		•	NBRE CONTENEUR	S	68 000	21 500
			conversion en EVP		11 750	11 750
			NBRE TONNES		104 070	104 070
			COUT €/conteneu	r	14€	32 €
			COUT €/EVP		82 €	58€
			COUT €/tonne		9€	7€

DETAIL SCENARIO FLUVIAL

NBRE DE JOURS
D'EXPLOITATION /an

VARIATION DU TONNAGE

0% si 0% = volumes actuels, test de +50% à -50% (TEST)

MARCHANDISES ET UTI (conteneurs)

	REMPLISSAGE	Volume 7' (m3)	Volume 10'HC
	CONTENEURS	volume / (ms)	(m3)
	100%	5.76	18.00
Tx chargement conteneurs =>	90%	5.1	16.2

ORIGINE	DESTINATION	Type de déchet	Tonnage annuel (tonnes)
Brumath	Centre de tri ALTEM	Corps plats / Corps creux	4 070
Vendenheim	Centre de tri ALTEM	Collecte sélective CUS	60 000
Centre de tri SARDI	CSDU Hochfelden	Refus de tri DIB	40 000

ORIGINE	DESTINATION	Type de déchet	Densité non compacté (t/m3)	Densité compacté (t/m3)		Nombre de 7' (/an)	Nombre de 10'HC (/an)
Brumath	Centre de tri ALTEM	Corps plats / Corps creux	0.1684	0.25	4 070	3 193	1 005
Vendenheim	Centre de tri ALTEM	Collecte sélective CUS	0.338	0.338	60 000	34 807	10 958
Centre de tri SARDI	CSDU Hochfelden	Refus de tri DIB	0.25775	0.2625	40 000	29 879	9 407

-		
conteneurs par	Nombre de 7'	Nombre de 10'HC
ORIGINE	(/jour)	(/jour)
BRUMATH	13	4
Vendenheim	139	44
SARDI	120	38

conteneurs par DESTINATION	Nombre de 7' (/jour)	Nombre de 10'HC (/jour)
ALTEM	152	(/Jour) 48
Hochfelden	120	38

PARCOURS FLUVIAL	ORIGINE	DESTINATION	Tonnage /AN	Nombre de 7'	Nombre de 10'HC
NORD > SUD	Vendenheim	STRASBOURG	64 070	38 000	11 963
SUD > NORD	STRASBOURG	Vendenheim	40 000	29 879	9 407

PARCOURS FLUVIAL	ORIGINE	DESTINATION	Tonnage /JOUR	Nombre de 7'	Nombre de 10'HC
NORD > SUD	Vendenheim	STRASBOURG	256	152	48
SUD > NORD	STRASBOURG	Vendenheim	160	120	38
		TOTAL 2 SENS	416	272	86
 nir compte des contaneurs vide	s => may par conc	EOI III IBBE	116	152	10

Pour tenir compte des conteneurs vides => max par sens

VOLUME EVP (m3)	33

Marge nbre UTI	10%

FVP	47	47

BESOIN UTI	Nombre de 7'	Nombre de 10'HC
CONTENEURS	669	211

QTE = 1 jour rotation + 1 jour stock (+ marge)

MANUTENTION FLUVIALE

Durée chargement pour 1	0.05
conteneur (h)	0.05

durée chargement = durée déchargement

Modélisation avec un reachstacker Pas de modélisation avec portique

Pour les manutentions à quai et chargement camion =

utilisation d'un chariot élévateur

	Nbre 7' par	Nbre 10'HC par
	bateau	bateau
MAX	48	11

Nbre de Reachstacker	Pour les 7'	Pour les 10'HC
Vendenheim	1	1
STRASBOURG	1	1
NRRF reachet	2	2

Durée (flux max des 2 sens)	Durée 7' (h)	Durée 10'HC (h)
chargt 1 bateau	2.40	0.55
déchargt	2.40	0.55
nar BATFAII	4.80	1 10

CONDUCTEUR	Durée 7' (h)	Durée 10'HC (h)
Durée totale (h)	38.4	13.2
NBRF FTP /iour	5.5	1.9

PARCOURS FLUVIAL

Vendenheim <> PAS	Distance (km)	Vitesse moyenne (km/h)	Durée (h)	
Rhin	6.3	12	0.5	
Canal	10.8	6	1.8	
DISTANCE (km)	17.1	7.4	2.3	Durée (J)
		+ ECLUSES	3.3	1

Nbre d'écluses	6
Durée /écluse (h)	0.17
TEMPS ECLUSES (h)	1.00

NOMBRE D'AUTOMOTEURS

Besoin en bateaux	conteneurs 7'	conteneurs 10'HC
Durée /trajet (h)	8.10	4.40
DUREE d'un BOUCLE = A+R (h)	16.2	8.8
NBRE de BOUCLES /24h /bateau	1	2
Nbre conteneurs max /boucle	96	44
Besoin en capacité /jour (A+R)	304	96
NBRE bateaux	4	3
Offre capacité	384	132
TX CHARG	79%	73%
NBRE total de BOUCLES /24h	4	6

PARCOURS ROUTIERS (pré- et post- acheminements)

BENNES

Transport pré-acheminement en bennes TP, déchets non compressés

		_
Chargt (h/benne)	0.50	durée prise en compte mais pas le coût de la manutention (simplification, iso périmètre par rapport à la route)
Dechgt (h/benne)	0.50	
TONNES MAX (t)	25	
VOLUME MAX (m3)	50	pour les déchets => raisonner en volume

ORIGINE	DESTINATION	Distance (km)	Vitesse moyenne (km/h)	Durée aller (idem retour) (h)	TEMPS DE ROUTE A+R	DUREE d'1 BOUCLE (h)
SARDI (Strasbourg)	STRASBOURG	1.0	35	0.03	0.06	1.06
BRUMATH	VENDENHEIM	8.0	50	0.16	0.32	1.32

avec chargement et déchargement

BOUCLES par base	POIDS (t)	VOLUMES (m3)	BOUCLES /an	BOUCLES /jour	DUREE /jour (h)
Strasbourg	40 000	152 381	3048	13	13.7
Vendenheim	4 070	16 280	326	2	2.6

DUREE 1 ETP (h /jour)

PLATEAUX

<u>Transport post-acheminement en plateau (porteur ou semi-remorque)</u>

Dácharat /contangus (b)	0.043	idam washawaans
Déchargt /conteneur (h)	0.042	idem rechargement

	conteneurs 7'	conteneurs 10'HC
CONTENEURS MAX	5	4
Dochat Bocharat (h)	0.42	0.22

Déchargement conteneurs pleins et rechargement de conteneurs vides

						DUREE d'1 BOUCL	E (h)
ORIGINE	DESTINATION	Distance (km)	Vitesse moyenne (km/h)	Durée aller (idem retour) (h)	TEMPS DE ROUTE A+R	conteneurs 7'	conteneurs 10'HC
STRASBOURG	ALTEM (Strasbourg)	1.0	35	0.00	0.01	0.42	0.34
VENDENHEIM	HOCHFELDEN	20.0	50	0.40	0.80	1.22	1.13

	BOUCLES /jour		DUREE /jour (h)	
BOUCLES par base	conteneurs 7'	conteneurs 10'HC	conteneurs 7'	conteneurs 10'HC
Strasbourg	31	12	13.2	4.1
Vendenheim	24	10	29.2	11.3

NOMBRE DE CAMIONS

SCENARIO avec moyens en propre (achat de camions)

BENNES EN PROPRE (et	Conteneurs 7'		Conteneurs 10'HC		
affectation par site)	Strasbourg	Vendenheim	Strasbourg	Vendenheim	
DUREE TOTALE (h)	13.7	2.6	13.7		2.6

 affectation par site)
 Strasbourg
 Vendenheim
 Strasbourg
 Vendenheim

 DUREE TOTALE (h)
 13.7
 2.6
 13.7
 2.6

 Nbre matériel
 2
 1
 2
 1

 utilisation unitaire (h)
 6.9
 2.6
 6.9
 2.6

 NBRE ETP /jour
 2.0
 0.4
 2.0
 0.4

7.0 ETP pour les moyen en propre

PLATEAUX EN PROPRE (et	Conteneurs 7'		Conteneurs 10'HC	
affectation par site)	Strasbourg	Vendenheim	Strasbourg	Vendenheim
DUREE TOTALE (h)	13.2	29.2	4.1	11.3
Nbre matériel	2	4	1	2
utilisation unitaire (h)	6.6	7.3	4.1	5.7
NBRE ETP /jour	1.9	4.2	0.6	1.6

TRAITEMENT DES MARCHANDISES SUR LES SITES DE REGROUPEMENT

OPERATIONS	DETAILS	PRODUCTIVITE	UNITE	OUTILS	PERSONNEL
PRE-ACHEMIN.	admission PL	0.08	h /camion	-	agent
COMPACTAGE ET	sortie stock caisse vide	0.04	h /conteneur	chariot	conducteur
STOCKAGE	compactage déchets	0.02	h /tonne	compacteur	agent
STOCKAGE	entrée stock caisse pleine	0.04	h /conteneur	chariot	conducteur
CHARGt FLUVIAL	stock vers quai fluvlal	0.04	h /conteneur	chariot	conducteur
DECHARGt FLUVIAL	quai fluvial vers stock	0.04	h /conteneur	chariot	conducteur
POST-ACHEMIN.	déstockage + chargt PL	0.08	h /conteneur	chariot	conducteur
	retour conteneurs vides	0.04	h /conteneur	chariot	conducteur
LAVAGE	lavage conteneurs	0.08	h /conteneur	lavage	agent
	stockage conteneur	0.04	h /conteneur	chariot	conducteur
GESTION	gestion des sites	7.0	h /jour /site	-	chef de site

CONTENEURS ET TONNES	Conteneurs 7'	onteneurs 7' Conteneurs 10'HC		
CONTENEORS ET TONNES	Strasbourg	Vendenheim	Strasbourg	Vendenheim
CONTENEURS max /sens	152	120	48	38
VIDES	0	32	0	10
TOTAL conteneurs	152	152	48	48
TONNES	256	160	256	160

DUREE OPERATIONS	OLITUS	SCENARIO 7' (en h)		SCENARIO 10'HC (en h)	
DUREE OPERATIONS	OUTILS	Strasbourg	Vendenheim	Strasbourg	Vendenheim
PRE-ACHEMIN.	-	1.08	0.17	1.08	0.17
COMPACTAGE ET	chariot	6.08	4.80	1.92	1.52
STOCKAGE	compacteur	5.13	3.20	5.13	3.20
STOCKAGE	chariot	6.08	4.80	1.92	1.52
CHARGt FLUVIAL	chariot	6.08	6.08	1.92	1.92
DECHARGt FLUVIAL	chariot	6.08	6.08	1.92	1.92
POST-ACHEMIN.	chariot	9.60	12.16	3.04	3.84
	chariot	4.80	6.08	1.52	1.92
	lavage	10.00	12.67	3.17	4.00
	chariot	4.80	6.08	1.52	1.92
GESTION	-	7.00	7.00	7.00	7.00

données par jour

	Conteneurs 7'		Conteneurs 10'HC	
CHARIOT ET CONDUCTEUR	Strasbourg	Vendenheim	Strasbourg	Vendenheim
DUREE TOTALE (h)	43.5	46.1	13.8	14.6
Nbre matériel	4	4	2	2
utilisation unitaire (h)	10.9	11.5	6.9	7.3
NBRE ETP /jour	6.3	6.6	2.0	2.1
COMPACTEUR (pour	Conteneurs 7'		Conteneurs 10'HC	
chargement) ET AGENT	Strasbourg	Vendenheim	Strasbourg	Vendenheim
DUREE TOTALE (h)	5.1	3.2	5.1	3.2
Nbre matériel	1	1	1	1
utilisation unitaire (h)	5.1	3.2	5.1	3.2
NBRE ETP /jour	0.8	0.5	0.8	0.5
UNITE LAVAGE + AGENT	Conteneurs 7'		Conteneurs 10'HC	
ONTE LAVAGE + AGENT	Strasbourg	Vendenheim	Strasbourg	Vendenheim
DUREE TOTALE (h)	10.0	12.7	3.2	4.0
Nbre matériel	2	2	1	1
utilisation unitaire (h)	5.0	6.3	3.2	4.0
NBRE ETP /jour	1.5	1.9	0.5	0.6
AGENT D'ADMISSION	Conteneurs 7'		Conteneurs 10'HC	
AGENT D'ADIVIISSION	Strasbourg	Vendenheim	Strasbourg	Vendenheim
DUREE TOTALE (h)	1.1	0.2	1.1	0.2
NBRE ETP /jour	0.2	0.1	0.2	0.1
CHEF DE SITE	Conteneurs 7'		Conteneurs 10'HC	
CHEF DE SITE	Strasbourg	Vendenheim	Strasbourg	Vendenheim
DUREE TOTALE (h)	7.0	7.0	7.0	7.0
NBRE ETP /jour	1.0	1.0	1.0	1.0

CARBURANT

AUTOMOTEUR

Consommation moyenne	0.20
(L/CV.h)	0.20

pas de consommation durant le passage des écluses

PUISSANCE nécessaire	En charge	A vide
Rhin (CV)	134	88
Canal (CV)	18	12

CONSO CARBURANT	En charge	A vide
Rhin (L/h)	26.8	17.6
Canal (L/h)	3.6	2.4

PARCOURS	En charge	A vide	CONSO par trajet (litres)	CONSO /jour (litres) 7'	CONSO /jour (litres) 10'HC
Rhin	100%	0%	14.20	113.6	170.4
Canal	100%	0%	6.50	52.0	78.0
		-	LITRES /JOUR	166	248

consommation Distance Distance CONSO /jour CONSO /jour **CAMIONS** semi-remorque (litres/100km) 42.7 (litres) 10'HC (km/jour) 10'HC (km/jour) 7' (litres) 7' BENNE 58 58 24.8 24.8 PLATEAU 37.3 1 022 424 381.2 158.2 LITRES /JOUR 406 183

CHIFFRAGE ROUTIER

EXPLOITATION

	TRAJET ROUTIER <u>SOUS-TRAITES</u>	COUT UNITAIRE /jour	Taux de facturation	COUT €/an	
Brumath	Strasbourg	750€	100%	187 500	(dont ECO TAXE)
Vendenheim	Strasbourg	750€	100%	750 000	
Strasbourg	Hochfelden	750€	100%	750 000	
			TOTAL /an	1 687 500 €	

BILAN ECONOMIQUE

	SCENARIO DE REFERENCE
	équivalent 7' équivalent 10'HC
TOTAL	1 687 500 1 687 500
NBRE CONTENEURS	68 000 21500
conversion en EVP	11 750 11 750
NBRE TONNES	104 070 104 070
COUT €/conteneur	25 € 78 €
COUT €/EVP	144 € 144 €
COUT €/tonne	16 € 16 €

EVALUATION ENVIRONNEMENTALE

EMISSIONS CO2	Ratio kg eq.CO2 /litre	conso	EMISSIONS DE CO2 (tonnes)	
ROUTIER	2.95	225 705	665.8	
		TONNES CO2	665.8	

Données coûts externes transports	ROU	TIER
Congestion	2.50 €	€/veh.km
Accidents	0.043 €	€/veh.km
Pollution atmosphérique	0.058€	€/veh.km
Bruit	0.011 €	€/veh.km
Changement climatique	0.016€	€/veh.km
Amont/Aval	0.0187 €	€/veh.km

Source: European Commission DG TREN. 2008

	NBRE D'UO	COUTS E	XTERNES
	ROUTIER	équivalent 7'	équivalent 10'HC
Congestion	528 950	1 322 375 €	1 322 375 €
Accidents	528 950	22 745 €	22 745 €
Pollution atmosphérique	528 950	30 679 €	30 679 €
Bruit	528 950	5 818 €	5 818 €
Changement climatique	528 950	8 463 €	8 463 €
Amont/Aval	528 950	9 891 €	9 891 €
TOTAL (€)		1 390 081 €	1 390 081 €
NBRE CONTENEURS	68 000	21 500	
conversion en EVP	11 750	11 750	
NBRE TONNES	104 070	104 070	
COUT €/conteneur	20 €	65 €	
COUT €/EVP		118 €	118 €
COUT €/tonne		13 €	13 €

DETAIL SCENARIO ROUTIER (situation initiale)

ORIGINE	DESTINATION	DISTANCE 100% ROUTE (km)	Tonnage annuel (tonnes)	Densité non compacté (t/m3)
Brumath	Strasbourg	35	4 070	0.1684
Vendenheim	Strasbourg	28	60 000	0.3380
Strasbourg	Hochfelden	47	40 000	0.2578

BENNES

transport en benne TP, non compressé

Chargt (h/benne)	0.50
Dechgt (h/benne)	0.50
TONNES MAX (t)	25
VOLUME MAX (m3)	50

durée prise en compte mais pas le coût de la manutention (simplification, iso périmètre par rapport à la route)

ORIGINE	DESTINATION	Distance (km)	Vitesse moyenne (km/h)	temps de route ALLER (h)	temps de route RETOUR (h)	temps chargt + déchargt (h)	DUREE (A/R)	DUREE totale /JOUR
Brumath	Strasbourg	35	50	0.70	0.70	1.00	2.40	4.65
Vendenheim	Strasbourg	28	50	0.56	0.56	1.00	2.12	30.11
Strasbourg	Hochfelden	47	50	0.94	0.94	1.00	2.88	35.76

les camions rentrent à vide, pas d'organisation avec rechargement à proximité

TEMPS DE SERVICE MAX	0	
/camion et /jour	9	camions sous-traités

ORIGINE	DESTINATION	BOUCLES /jour	NBRE DE CAMIONS /jour	BOUCLES /camion	Amplitude par camion (h)	temps restant	facturation ?
Brumath	Strasbourg	2.0	1	2.0	4.65	4.4	1.0
Vendenheim	Strasbourg	14.3	4	3.6	7.53	1.5	1.0
Strasbourg	Hochfelden	12.5	4	3.2	8.94	0.1	1.0
		CAMIONS /jour	9			-	

consommation (litres/100km) 42.7

ORIGINE	DESTINATION	CONSOMMATION (litres)	CONSO /JOUR
Brumath	Strasbourg	29.9	59.80
Vendenheim	Strasbourg	23.9	341.77
Strasbourg	Hochfelden	40.1	501.25
		LITRES /JOUR	902.82

PRESENTATION SCENARIO 2

TRANSPORT DE PALETTES EN COURTE DISTANCE

Produits grande distribution, palettisées (sens 1) et retour palettes vides + quelques palettes pleines, env. 10% sens 1 (sens 2)

VENDENHEIM = 1er pôle commercial de l'agglo strabourgeoise (CA 2010 = 374 M €)

Construit à partir de l'exemple SITA + CUS (pour la partie navigation), mais pour zone commerciale VENDENHEIM

CHIFFRAGE FLUVIAL

AMORTISSEMENT

INVESTISSEMENT (EUR)		UNITE	Prix achat UNITAIRE (€)	DUREE Amortisst (années)	TX de SUBVENTION
FLUVIAL	automoteurs	2	535 000 €	30	37%
ROUTIER	tautliner	2	105 000 €	15	
MANUTENTION	chariot elevateur (*)	2	25 000 €	5	25%
AMENAGEMENTS	STRASBOURG	1	22 500 €	1	20%
PORTUAIRES	VENDENHEIM	1	22 500 €	1	20%
		TOTAL	1 375 000 €		

Barge en rotation 24h/24, courte distance => pas de logement nécessaire

Hypothèse : durée d'emprunt = durée d'amortissement

Espaces portuaires = en location (comptabilisés en amortissement)

- (*) = 4 chariot comptabilisés dans les bateaux
- (1) = subv de 20% de la différence fluvial / route
- (2) = 200 000 € /bateau et également -100 000 € d'études (1x)

TAUX D'INTERET	2%

AMORTISSEMENT (FUR /an)			AVEC_ SUBVENTION
FLUVIAL	automoteurs	47 775 €	26 582 €
ROUTIER	tautliner	16 343 €	16 343 €
MANUTENTION	chariot elevateur	10 608 €	7 956 €
AMENAGEMENTS	STRASBOURG	22 950 €	18 360 €
PORTUAIRES	VENDENHEIM	22 950 €	18 360 €
	TOTAL /an	120 627 €	87 601 €
	-	TOTAL SUBV.	-33 025 €

EXPLOITATION

FLUVIAL (automoteurs) MOYENS EN PROPRE		COUT UNITAIRE	NBRE d'unités d'œuvre	COUT TOTAL /an
	carburant (€/litre)	0.74 €	24 840	18 382 €
	Lubrifiant (% de carburant)	7%	-	1 287 €
	Entretien (% de carburant)	15%	-	2 757 €
	Assurances	10 000 €	2	20 000 €
	Impôts et taxes	15 000 €	2	30 000 €
AUTOMOTEUR	Remplacement personnel	5 000 €	2	10 000 €
AUTOMOTEUR	Maintenance et travaux	10 000 €	2	20 000 €
	Salaire batelier	36 000 €	2	72 000 €
	taxe d'accès (/accès)	36.54 €	2 400	87 696 €
	taxe navigation /1000t.km	0.784 €	2 020	1 584 €
	Frais de gestion	5%	1	13 185 €
	Marge si sous-traitance	0%		0€
			TOTAL /an	276 890 €

		Total /an
Certificat Eco Energie (CEE) (0,3c€/kWh et 1L gasoil= 10,6kWh)	-0.003 €	-1 871 €

ROUTIER (pré- et post- acheminements)		COUT UNITAIRE	NBRE d'unités d'œuvre	COUT TOTAL /an
	coût kilométrique (€/km)	0.575 €	4 800	2 760 €
TAUTLINER ECO TAXE (€/km)		0.140 €	4 800	672 €
moyen EN PROPRE	coût horaire (€/h)	20.33 €	3 792	77 091 €
	frais fixes (€ /an)	40 000 €	2	80 000 €
		TOTAL /an	160 523 €	

EQUIPEMENTS		COUT UNITAIRE	NBRE d'unités d'œuvre	COUT TOTAL /an
MANUTENTION chariot elevateur (€/h)		30 €	19 688	590 625 €
		•	TOTAL /an	590 625 €

PERSONNEL

FRAIS DE PERSONNEL SUR SITES		COUT UNITAIRE	NBRE d'unités d'œuvre	COUT TOTAL /an
	cariste (€/ETP)	196 €	2 813	551 250 €
Main d'œuvre sur sites	chef de site (€/ETP)	252 €	600	151 200 €
			TOTAL /an	702 450 €

BILAN ECONOMIQUE

		SANS SUBVENTION	<u>AVEC</u> SUBVENTION
AMORTISSEMENT		120 627 €	120 627 €
SUBVENTION AMORTISSEMEN	IT	-	-33 025 €
EXPLOITATION FLUVIALE		276 890 €	276 890 €
EXPLOITATION ROUTE		160 523 €	160 523 €
EXPLOITATION EQUIPEMENTS		590 625 €	590 625 €
FRAIS DE PERSONNEL		702 450 €	702 450 €
SUBVENTION EXPLOITATION (CEE)	-	-1 871 €
	TOTAL	1 851 115 €	1 816 219 €
	SUBVENTION	-	34 896 €
	NBRE PALETTES	118 125	118 125
	conversion en EVP	9 923	9 923
	NBRE TONNES	59 063	59 063
	COUT €/palette	16 €	15 €
	COUT €/EVP	187 €	183 €
	COUT €/tonne	31 €	31 €

Situation "virtuelle" car actuellement les grands entrepôts régionaux ne sont pas en bord de voie d'eau

EVALUATION ENVIRONNEMENTALE

EMISSIONS CO2	Ratio kg eq.CO2 / litre	NBRF LITRES	EMISSIONS DE CO2 (tonnes)
FLUVIAL	2.95	24 840	73.3
ROUTIER	2.95	1 819	5.4
		TONNES CO2	78.6

Données coûts externes transports	ROUTIER (pré- et post- acheminements)		FLU	VIAL
Congestion	2.50€	€/veh.km	0€	
Accidents	0.043 €	€/veh.km	0€	
Pollution atmosphérique	0.058 €	€/veh.km	6.05€	€/barge.km
Bruit	0.011 €	€/veh.km	0€	
Changement climatique	0.016 €	€/veh.km	0.56€	€/barge.km
Amont/Aval	0.0187 €	€/veh.km	0.52 €	€/barge.km

Source: European Commission DG TREN. 2008

	UO ROUTIER	UO FLUVIAL	COUTS EXTERNES
Congestion	4 800	0	12 000 €
Accidents	4 800	0	206 €
Pollution atmosphérique	4 800	20 520	124 424 €
Bruit	4 800	0	53 €
Changement climatique	4 800	20 520	11 568 €
Amont/Aval	4 800	20 520	10 760 €
	Total coûts ext. (€	:)	159 012 €
	NBRE PALETTES		118 125
	conversion en EVP)	9 923
	NBRE TONNES		59 063
	COUT €/palette		1€
	COUT €/EVP		16 €
	COUT €/tonne		3€

DETAIL SCENARIO FLUVIAL

NBRE DE JOURS D'EXPLOITATION /an	300	
VARIATION DU TONNAGE (TEST)	0%	si 0% = volumes actuels, test de +50% à -50%

MARCHANDISES ET UTI (palettes)

ZA Vendenheim (ha)	80	Dépotage conteneurs sur le port de STRASBOURG puis livraison en palettes vers ZA de Vendenheim
Surfaces logistiques	100 000	Estimation (12,5%)
RATIO tonnes/jour/10000m²	131	ratio IAU non alimentaire (moyenne entrée + sorties)
TONNES /JOUR	1 313	
RATIO tonnes/palette	0.50	Palettes 80 x 120 (non gerbables)
PALETTES /JOUR	2 625	
FLUX captés	10%	du total des flux reçus par la Zone commerciale de VENDENHEIM
Equilibre des flux	50%	En cas de livraison vers strasbourg (distribution urbaine) à partir de Vendenheim

ORIGINE	DESTINATION	MARCHANDISES	TONNES /AN	PALETTES /AN	TONNES / JOUR	PALETTES /JOUR
STRASBOURG	ZA VENDENHEIM	Appro gde distribution	39 375	78 750	131	263
ZA VENDENHEIM	STRASBOURG	Retour, livraison urbaine	19 688	39 375	66	131
Dépotage conteneurs sur le port de STRASBOURG puis livraison en palettes			TOTAL 2 SENS	197	394	
			ELLIV MANY	121	262	

Palettes vides = non comptabilisées, mais retour par bateau

Marge nbre UTI	5%
Stock palettes	4 200

Stock palettes = % du flux /an, par sécurité En théorie, pas de besoin, marchandises dépotées déjà palettisées

	20'	40'
Répartition	40%	60%
Palettes /conteneur	11	25

Palettes /EVP	11.90
1 palette-> EVP	0.0840

MANUTENTION FLUVIALE

	PALETTES /bateau		(non gerbables)
	PLACES MAX	144	
	BESOIN MAX	263	,
si besoin max sup. à places max => alors lissage sur plusieurs bateaux (moyenne)	BESOIN moyen	131	

Chargement bateau avec 2 chariots minimum (1 sur le quai et 1 à l'interieur de la cale)

	Nbre de chariots		
ı	VENDENHEIM	2	multiples de 2!
)	STRASBOURG	2	
	CHARIOTS	4	

Durée chargement pour 1 palette (h)	0.03	
durée chargement = durée déchargement		

VENDENHEIM	6.56
STRASBOURG	6.56
DUREE TOTALE	13.13

DUREE (h) chargt + déchargt par bateau

DUREE condu	cteurs chariot
Durée totale (h)	52.5
NRDE ETD /iour	7 5

PARCOURS FLUVIAL

Vendenheim <> PAS	Distance (km)	Vitesse moyenne (km/h)	Durée (h)
Rhin	6.3	12	0.5
Canal	10.8	6	1.8
DISTANCE (km)	17.1	TEMPS NAVIGATION (h)	2.3
	Vitassa mayanna	7.4	

Nbre d'écluses	6
Durée passage écluse (h)	0.17
TEMPS ECLUSES (h)	1.00

NOMBRE D'AUTOMOTEURS

1 trajet = chargement + navigation + déchargement

Besoin par JOUR (aller + retour) Besoin capacité

ESTIMATION NBRE DE BATEAUX durée trajet (h) 9.86 1 BOUCLE = A+R = 1 aller + 1 retour DUREE A+R (h) 19.73 Boucles max BOUCLES /24h PLACES DISPO 288 NBRE bateaux 2 TX de chargement si 1 137% seul bateau 2

(boucles totales = nbre de bateaux par jour x boucle par bateau) BOUCLES /24h

PARCOURS ROUTIERS (pré- et post- achemin

PRE-ACHEMINEMENTS : entrepôt bord à quai

SEMI-REMORQUE TAUTLINER POST-ACHEMINEMENTS

_	
NBRE DE PALETTES	33
Durée chargt par palette	0.033
DUREE chargement (h)	1.10
Clients /tournée	3
Temps moven /client	0.083

idem déchargement

ORIGINE	DESTINATION	Distance boucle (km)	Vitesse km/h	durée route (h)	durée manut (h)	DUREE TOTALE	BOUCLES /jour	DUREE /jour (h)
VENDENHEIM	zone d'activité (distribution)	4	25	0.16	3.00	3.16	4.00	12.64
Boucles de distribution (tournées), livraison des palettes à différents clients chargement + déchargeme						TOTAL	4	12.64

NOMBRE DE CAMIONS

SCENARIO avec moyens en propre (achat de camions)

DUREE 1 ETP (h /jour)	7.0 ETP pour les moyen en propre
•	

TAUTLINER (en propre)				
DUREE TOTALE (h)	12.6			
Nbre matériel	2			
utilisation unitaire (h)	6.3			
NBRF FTP /iour	1.8			

TRAITEMENT DES MARCHANDISES SUR LES SITES DE REGROUPEMENT

Vendenheim

OPERATIONS	DETAILS	PRODUCTIVITE	UNITE	OUTILS	PERSONNEL
IPOST-ACHEMIN.	chargement camion	0.03	h /palette	chariot elevatr	cariste
	déchargement camion	0.03	h /palette	chariot elevatr	cariste
GESTION	gestion des sites	7.0	h /jour /site	-	chef de site

	TONNES	
STRASBOURG	263	131
VENDENHEIM	131	66
TOTAL	394	197

OPERATION	OUTILS	STRASBOURG	VENDENHEIM	DUREE (h)
POST-ACHEMIN.	chariot elevateur	0.00	13.13	13.13
GESTION	-	7.00	7.00	14.00

données par jour

CHARIOT ELEVATEUR	STRASBOURG	VENDENHEIM	FLUVIAL	TOTAL
DUREE TOTALE (h)	idem scénario de	13.13	52.50	65.63
Nbre matériel	référence	2.00	4.00	6.00
utilisation unitaire (h)	reference	6.56	13.13	19.69

données par jour

CARISTE	STRASBOURG	VENDENHEIM	FLUVIAL	TOTAL
DUREE TOTALE (h)	idem scénario de	13.13	52.50	65.63
NBRE ETP /jour	référence	1.88	7.50	9.38
CHEF DE SITE	STRASBOURG	VENDENHEIM	FLUVIAL	TOTAL
DUREE TOTALE (h)	7.00	7.00	0.00	14.00
NBRE ETP /jour	1.00	1.00	0.00	2.00

CARBURANT

AUTOMOTEUR

Consommatio (L/CV.h)	n moy	enne	0.20			
		-	 	-	$\overline{}$	

pas de consommation durant le passage des écluses

PUISSANCE nécessaire	En charge	A vide
Rhin (CV)	134	88
Canal (CV)	18	12

CONSO CARBURANT	En charge	A vide
Rhin (L/h)	26.8	17.6
Canal (L/h)	3.6	2.4

PARCOURS	En charge	A vide	CONSO par trajet (litres)	CONSO /jour (litres)
Rhin	100%	0%	14.20	56.8
Canal	100%	0%	6.50	26.0
·		-	LITPES /IOLIP	02

CAMIONS

semi-remorque	consommation (litres/100km)	Distance (km/jour)	CONSO /jour (litres)
TAUTLINER	37.9	16	6.1
		LITRES /JOUR	6.1

CHIFFRAGE ROUTIER

EXPLOITATION

TRAJET ROUTIER <u>SOUS-TRAITES</u>		COUT UNITAIRE /jour	Taux de facturation	COUT €/an	
STRASBOURG	ZA VENDENHEIM	750 €	100%	900 000	(dont ECO TAXE)
ZA VENDENHEIM	STRASBOURG	750 €	100%	450 000	
			TOTAL /on	1 250 000 6	

BILAN ECONOMIQUE

	SCENARIO DE
	REFERENCE
TOTAL	1 350 000
NBRE PALETTES	118 125
conversion en EVP	9 923
NBRE TONNES	59 063
COUT €/palette	11 €
COUT €/EVP	136 €
COUT €/tonne	23 €

EVALUATION ENVIRONNEMENTALE

EMISSIONS CO2	Ratio kg eq.CO2 /litre	CONSO CARBURANT	EMISSIONS DE CO2 (tonnes)	
ROUTIER	2.95	85 500	252	
		TONNES CO2	252	

Données coûts externes transports	ROUTIER		
Congestion	2.50€	€/veh.km	
Accidents	0.043 €	€/veh.km	
Pollution atmosphérique	0.058 €	€/veh.km	
Bruit	0.011 €	€/veh.km	
Changement climatique	0.016 €	€/veh.km	
Amont/Aval	0.0187 €	€/veh.km	

Source: European Commission DG TREN. 2008

		NBRE D'UO ROUTIER	COUTS EXTERNES
Congestion		112 500	281 250 €
Accidents		112 500	4 838 €
Pollution atmosphérique		112 500	6 525 €
Bruit		112 500	1 238 €
Changement climatique		112 500	1 800 €
Amont/Aval		112 500	2 104 €
	TOTAL		297 754 €
	NBRE PALETTES		118 125
	conversion en EVP		9 923
	NBRE TONNES		59 063
	COUT €/palette		3€
	COUT €/EVP		30 €
	COUT €/tonne		5€

DETAIL SCENARIO ROUTIER (situation initiale)

ORIGINE	DESTINATION	DISTANCE 100% ROUTE (km)	Tonnage annuel (tonnes)	PALETTES /JOUR
STRASBOURG	ZA VENDENHEIM	25	39 375	263
ZA VENDENHEIM	STRASBOURG	25	19 688	131

Conteneurs en provenance des ports du Nord (BENELUX)

SEMI-REMORQUE TAUTLINER

POST-ACHEMINEMENTS

33	
80%	Ī
0.033	
0.88	i
3	l
0.083	
	80% 0.033 0.88 3

idem déchargement

Chargements complets => 1 destination = 1 camion

ORIGINE	DESTINATION	Distance (km)	Vitesse moyenne (km/h)	temps de route ALLER (h)	temps de route RETOUR (h)	temps chargt + déchargt (h)	DUREE (A/R)	DUREE /JOUR
STRASBOURG	ZA VENDENHEIM	25	60	0.42	0.42	1.93	2.76	27.44
ZA VENDENHEIM	STRASBOURG	25	60	0.42	0.42	2.34	3.18	15.79

les camions rentrent à vide, pas d'organisation avec rechargement à proximité

TEMPS DE SERVICE MAX	9	camions sous-traités
/camion et /jour		camions sous-traites

ORIGINE	DESTINATION	BOUCLES /jour	NBRE DE CAMIONS /jour	BOUCLES /camion	Amplitude par camion (h)	temps restant	facturation ?
STRASBOURG	ZA VENDENHEIM	10.0	4	2.5	6.86	2.1	1.0
ZA VENDENHEIM	STRASBOURG	5.0	2	2.5	7.90	1.1	1.0
		CAMIONS /iour	6				

consommation (litres/100km)	37.9
-----------------------------	------

ORIGINE	DESTINATION	CONSOMMATION (litres)	CONSO /JOUR
STRASBOURG	ZA VENDENHEIM	19.0	190.00
ZA VENDENHEIM	ZA VENDENHEIM STRASBOURG		95.00
		LITRES /JOUR	285.00

Projet POD - étude des coûts SCENARIO 3 TLA - Rapport final

PRESENTATION SCENARIO 3

TRANSPORT DE CONTENEURS EN LONGUE DISTANCE Pièces mécaniques (sens 1) + chutes de ferrailles (sens 2), marchandises conteneurisées Construit à partir de l'exemple PSA

CHIFFRAGE FLUVIAL

AMORTISSEMENT

INVESTISSEMENT (EUR)		Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Prix achat UNITAIRE (€)	DUREE Amortisst (années)	TX de SUBVENTION	
FLUVIAL	automoteurs	22	22	560 000 €	30	36%	(2)
ROUTIER	plateau	2	2	100 000 €	15		
UTI	conteneurs 7'	731	-	2 500 €	20	20%	(1)
OII	conteneurs 10'HC	-	252	3 000 €	20	20%	(1)
BAANUTENTION	reachstacker	2	2	350 000 €	15	25%	
MANUTENTION	chariot	2	2	200 000 €	15	25%	
Aménagements nortuaires	SEPT-FONS	1	1	500 000 €	50	20%	(1)
	MULHOUSE	1	1	900 000 €	50	20%	(1)

TOTAL

scénario 7'

16 847 000 €

10'HC

15 776 000 €

Barge en longue distance => logement nécessaire

Hypothèse : durée d'emprunt = durée d'amortissement Aménagements portuaires pris en comtpte pour des sites privés

(1) = subv de 20% de la différence fluvial / route

(2) = 200 000 € /bateau et également -100 000 € d'études (1x)

TAUX D'INTERET 2%

		SANS SUBVENTION /an		AVEC SUBVENTION /an	
AMORTISSEMENT (EUR /an)		Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC
FLUVIAL	automoteurs	550 087 €	550 087 €	350 294 €	350 294 €
ROUTIER	plateau	15 565 €	15 565 €	15 565 €	15 565 €
UTI	conteneurs 7'	111 733 €	-	89 387 €	-
011	conteneurs 10'HC	-	46 234 €	-	36 988 €
MANUTENTION	reachstacker	54 478 €	54 478 €	40 858 €	40 858 €
MANUTENTION	chariot	31 130 €	31 130 €	23 348 €	23 348 €
A	SEPT-FONS	15 912 €	15 912 €	12 729 €	12 729 €
Aménagements portuaires	MULHOUSE	28 641 €	28 641 €	22 913 €	22 913 €
	TOTAL /an	807 546 €	742 047 €	555 094 €	502 695 €
			TOTAL SUBV	-252 452 €	-239 352 €

EXPLOITATION

	N N			tés d'œuvre	COUT TOT	'AL /an
FLUVIAL (automoteurs) MOYENS EN PROPRE		COUT UNITAIRE	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC
	carburant (€/litre)	0.74 €	89 760	89 760	66 422 €	66 422 €
	Lubrifiant (% de carburant)	7%	1	-	4 650 €	4 650 €
	Entretien (% de carburant)	15%	-	-	9 963 €	9 963 €
	Assurances	10 000 €	22	22	220 000 €	220 000 €
	Impôts et taxes	15 000 €	22	22	330 000 €	330 000 €
AUTOMOTEUR	Remplacement personnel	5 000 €	22	22	110 000 €	110 000 €
AUTOMOTEUR	Maintenance et travaux	10 000 €	22	22	220 000 €	220 000 €
	Salaire batelier	36 000 €	22	22	792 000 €	792 000 €
	taxe d'accès (/accès)	36.54 €	440	440	16 078 €	16 078 €
	taxe navigation (€/caisse*)	2€	12 760	4 400	25 520 €	8 800 €
	Frais de gestion	5%	=	-	89 732 €	88 896 €
	Marge si sous-traitance	0%	-	-	0€	0€
	* = vides ou pleines			TOTAL /an	1 884 365 €	1 866 809 €

 Q° = taxe 0,784€/1000t.km ou 2 €/conteneur (idem 20') ?

TOTAL /an

Scénario
Conteneurs 7'

SUBVENTION COUP DE PINCE (15€ changt modal, hors dépotage)

Certificat Eco Energie (CEE) (0,3c€/kWh économisés avec 1 litre gasoil = 10,6 kWh)

TOTAL /an

Scénario
Conteneurs 7'
10'HC

-382 800 € -132 000 €
-23 592 € -23 699 €

conteneurs vides et pleins

		NBRE d'unités d'œuvre		COUT TOTAL /an		
	ROUTIER (pré- et post- acheminements) MOYENS <u>EN PROPRE</u>		Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC
	coût kilométrique (€/km)	0.575 €	7 920	3 960	4 554 €	2 277 €
PLATEAU	ECO TAXE (€/km)	0.140 €	7 920	3 960	1 109 €	554€
PLATEAU	coût horaire (€/h)	20.33 €	1 100	484	22 363 €	9 840 €
	frais fixes (€ /an)	40 000 €	2	2	80 000 €	80 000 €
		•		TOTAL /an	108 026 €	92 671 €

NBRE d'unités d'œuvre	COUT TOTAL /an

EQUIPEMENTS		COUT UNITAIRE	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC
MANUTENTION	reachstacker (€/h)	40 €	1 276	440	51 040 €	17 600 €
MANUTENTION	chariot (€/h)	38 €	2 006	686	76 243 €	26 083 €
	•	•		TOTAL /an	127 283 €	43 683 €

DEDCONNE

		NBRE d'unités d'œuvre		COUT TOTAL /an		
FRAIS DE PERSONNEL SUR SITES		COUT UNITAIRE	Scénario 7'	Scénario 10'HC	Scénario 7'	Scénario 10'HC
Danie dienume aus sites	conducteurs (€/ETP)	196 €	506	198	99 176 €	38 808 €
Main d'œuvre sur sites	chef de site (€/ETP)	252 €	440	440	110 880 €	110 880 €
	•			TOTAL /an	210 056 €	149 688 €

BILAN ECONOMIQUE

		SANS SUBVE	NTION /an	AVEC SUBVI	ENTION /an
		Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC
AMORTISSEMENT		807 546 €	742 047 €	807 546 €	742 047 €
SUBVENTION AMORTISSEMEN	NT	-	-	-252 452 €	-239 352 €
EXPLOITATION FLUVIALE		1 884 365 €	1 866 809 €	1 884 365 €	1 866 809 €
EXPLOITATION ROUTE		108 026 €	92 671 €	108 026 €	92 671 €
EXPLOITATION EQUIPEMENTS	5	127 283 €	43 683 €	127 283 €	43 683 €
FRAIS DE PERSONNEL		210 056 €	149 688 €	210 056 €	149 688 €
SUBVENTION EXPLOITATION ((coup de pince + CEE)	-	-	-406 392 €	-155 639 €
	TOTAL	3 137 276 €	2 894 898 €	2 478 432 €	2 499 906 €
	SUBVENTION	-	-	658 844 €	394 992 €
	NBRE CONTENEURS	12 320	4 180	12 320	4 180
	conversion en EVP	2 200	2 200	2 200	2 200
	NBRE TONNES	101 200	101 200	101 200	101 200
	COUT €/conteneur	255 €	693 €	201 €	598€
	COUT €/EVP	1 426 €	1 316 €	1 127 €	1 136 €
	COUT €/tonne	31 €	29€	24 €	25 €

Taux de chargement (en nombre de conteneurs) proche du MAX avec solution 10'HC Solution 7', plus prudente, permet une réserve de volume si nécessaire (en cas de densité moindre)

EVALUATION ENVIRONNEMENTALE

		NBRE d'UO (litres) EMISSIONS D		CO2 (tonnes)	
EMISSIONS CO2	Facteur d'émissions (kg eq CO2 / litre)	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC
FLUVIAL	2.95	168 388	168 388	496.7	496.7
ROUTIER	2.95	3 002	1 501	8.9	4.4
			TONNES CO2	505.6	501.2

Données coûts externes transports	ROUTIER (pré- et post- acheminements)		FLU	VIAL
Congestion	2.50 €	€/veh.km	0€	
Accidents	0.043 €	€/veh.km	0€	
Pollution atmosphérique	0.058 €	€/veh.km	6.05€	€/barge.km
Bruit	0.011 €	€/veh.km	0€	
Changement climatique	0.016 €	€/veh.km	0.56€	€/barge.km
Amont/Aval	0.0187 €	€/veh.km	0.52 €	€/barge.km

Source: European Commission DG TREN. 2008

	ROUTIER (Unités d'œuvre)		FLUVIAL (Uni	FLUVIAL (Unités d'œuvre)		COUTS EXTERNES	
	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	Scénario Conteneurs 7'	Scénario Conteneurs 10'HC	
Congestion	7 920	3 960	0	0	19 800 €	9 900 €	
Accidents	7 920	3 960	0	0	341€	170 €	
Pollution atmosphérique	7 920	3 960	184 800	184 800	1 118 499 €	1 118 270 €	
Bruit	7 920	3 960	0	0	87 €	44 €	
Changement climatique	7 920	3 960	184 800	184 800	103 615 €	103 551 €	
Amont/Aval	7 920	3 960	184 800	184 800	96 244 €	96 170 €	
			Total coûts ext. (€)		1 338 586 €	1 328 105 €	
		•	NBRE CONTENEUR	S	12 320	4 180	
			conversion en EVP		2 200	2 200	
			NBRE TONNES		101 200	101 200	
			COUT €/conteneur		109€	318 €	
			COUT €/EVP		608€	604 €	
			COUT €/tonne		13 €	13 €	

DETAIL SCENARIO FLUVIAL

NBRE /JOUR 160 VOLUME TOTAL /jour 165 Poids moyen /caisse 1.50 Tare caisse (tonnes) 0.9 TONNES /jour 240			
VOLUME caisse (m3) 1.03 NBRE /JOUR 160 VOLUME TOTAL /jour 165 Poids moyen /caisse 1.50 Tare caisse (tonnes) 0.9 TONNES /jour 240		modèle PSA avec caisses	
NBRE /JOUR 160 VOLUME TOTAL /jour 165 Poids moyen /caisse 1.50 Tare caisse (tonnes) 0.9 TONNES /jour 240		métal	
VOLUME TOTAL /jour 165 Poids moyen /caisse 1.50 Tare caisse (tonnes) 0.9 TONNES /jour 240	VOLUME caisse (m3)	1.03	
Poids moyen /caisse 1.50 Tare caisse (tonnes) 0.9 TONNES /jour 240	NBRE /JOUR	160	
Tare caisse (tonnes) 0.9 TONNES /jour 240	VOLUME TOTAL /jour	165	
TONNES / jour 240	Poids moyen /caisse	1.50	
	Tare caisse (tonnes)	0.9	
TOTAL + tare 294	TONNES /jour	240	(r
TOTAL + tale 384	TOTAL + tare	384	
11000 00 101100			i

oour le sens max.)

NBRE DE JOURS	220
D'EXPLOITATION /an	220

VARIATION DU TONNAGE	0%
(TEST)	U%

si 0% = volumes actuels, test de +50% à -50%

MARCHANDISES ET UTI (conteneurs)

	REMPLISSAGE	Volume 7' (m3)	Volume 10'HC
	CONTENEURS	volume / (ms)	(m3)
	100%	5.76	18.00
Tx chargement conteneurs =>	100%	5.76	18.00

BESOIN	Volume 7' (m3)	Volume 10'HC	
CONTENEURS	volunic / (ms)	(m3)	
VOLUME MAX	253	180	
conteneurs /J	29	10	
Ty chargement	66%	100%	

ORIGINE	DESTINATION	Type de marchandises	Tonnage annuel (tonnes)	Densité compacté (t/m3)	Tonnage annuel (tonnes)	Nombre de 7' (/an)	Nombre de 10'HC (/an)
SEPT-FONS	MULHOUSE	pièces mécaniques	52 800	1.44	52 800	6 380	2 200
MULHOUSE	SEPT-FONS	chutes de ferrailles	48 400	1.44	48 400	5 849	2 017

conteneurs par	Nombre de 7'	Nombre de
ORIGINE	(/jour)	10'HC (/jour)
SEPT-FONS	29	10
MULHOUSE	27	9

hors transport de conteneurs vides

conteneurs par DESTINATION	Nombre de 7' (/jour)	Nombre de 10'HC (/jour)
MULHOUSE	29	10
SEDT-EONS	27	Q

ORIGINE	DESTINATION	Tonnage /AN	Nombre de 7'	Nombre de 10'HC
SEPT-FONS	MULHOUSE	52 800	6 380	2 200
MULHOUSE	SEPT-FONS	48 400	5 849	2 017

ORIGINE	DESTINATION	Tonnage /JOUR	Nombre de 7'	Nombre de 10'HC
SEPT-FONS	MULHOUSE	240	29	10
MULHOUSE	SEPT-FONS	220	27	9
TOTAL 2 SENS		460	56	19
des conteneurs vides => max par sens		EQUILIBRE	29	10

Pour tenir compte des conteneurs vides => max par sens EQUILIBRE

NBRE EVP 10 10

Marge nbre UTI	5%

VOLUME EVP (m3)

BESOIN UTI	Nombre de 7'	Nombre de 10'HC
CONTENEURS	731	252

QTE = NBRE en circulation + 1 jour stock (+ marge)

Nbre 7' par

Nbre 10'HC par

MANUTENTION FLUVIALE

Durée chargement pour 1 conteneur (h) durée chargement = durée déchargement

Modélisation avec un reachstacker Pas de modélisation avec portique

Pour les manutentions à quai et chargement camion = utilisation d'un chariot élévateur

bateau <u>AVEC</u> logement	Nbre 7' par bateau	Nbre 10'HC par bateau	
MAX	44	10	
Nbre de Reachstacker	Pour les 7'	Pour les 10'HC	
SEPT-FONS	1	1	
MULHOUSE	1	1	
NBRE reachst.	2	2	

Durée (flux max des 2 sens)	Durée 7' (h)	Durée 10'HC (h)
chargt 1 bateau	1.45	0.50
déchargt	1.45	0.50
DOL BATEAII	2.00	1.00

conducteurs reahstacker	Durée 7' (h)	Durée 10'HC (h)
Durée totale (h)	5.8	2.0
NEDE ETD /iour	0.00	0.20

PARCOURS FLUVIAL

Nbre d'écluses	188
Durée passage écluse (h)	0.17

TRAJET FLUVIAL	Distance (km)	Vitesse moyenne (km/h)	Durée (h)
Rhin / Saône	80	12.0	6.7
Canal	340	6.0	56.7
DISTANCE (km)	420	6.6	63.3
		TEMPS ECLUSES (h)	31.33
		+ ECLUSES	94.7

NOMBRE D'AUTOMOTEURS

POUR 1 BATEAU conteneurs 7' 1 parcours = chargement + navigation + déchargement durée parcours 1 BOUCLE = A+R = 1 aller + 1 retour DUREE A+R (h) Si durée boucle sup. 24h => 0 ! BOUCLES /24h

10'HC 99.10 95.70 198.2 191.4 0 0 0

Besoin par JOUR (aller + retour) Besoin capacité

conteneurs TOTAL BATEAUX conteneurs 7' 10'HC 58 20 NBRE bateaux 22 22 Offre capacité 88 20 66% 100% TX CHARG. Si durée boucle sup. 24h => 0 ! BOUCLES /24h 0 0

PARCOURS ROUTIERS (pré- et post- acheminements)

PLATEAUX

	conteneurs 7'	conteneurs 10'HC	
CONTENEURS MAX	5	4	
Dechgt + Rechargt (h)	0.33	0.27	echanges de conteneurs (pièces méd

écaniques <> chutes de ferrailles)

						DUREE d'1 B	OUCLE (h)
ORIGINE	DESTINATION	Distance (km)	Vitesse moyenne (km/h)	Durée aller (idem retour) (h)	TEMPS DE ROUTE A+R	conteneurs 7'	conteneurs 10'HC
SEPT-FONS	QUAI	1.5	35	0.04	0.09	0.42	0.35
MULHOUSE	QUAI	1.5	35	0.04	0.09	0.42	0.35

boucles en charge (avec un conteneur)

	BOUCLES /jour		DUREE /jour (h)	
BOUCLES par base	conteneurs 7'	conteneurs 10'HC	conteneurs 7'	conteneurs 10'HC
SEPT-FONS	6	3	2.5	1.1
MULHOUSE	6	3	2.5	1.1

NOMBRE DE CAMIONS

SCENARIO avec moyens en propre (achat de camions)

DUREE 1 ETP (h /jour)	7.0 ETP pour les moyen en propre
-----------------------	----------------------------------

PLATEAUX EN PROPRE (et	Conteneurs 7'		Conteneurs 10'HC		
affectation par site)	SEPT-FONS	MULHOUSE	SEPT-FONS	MULHOUSE	
DUREE TOTALE (h)	2.5	2.5	1.1	1.1	
Nbre matériel	1	1	1	1	
utilisation unitaire (h)	2.5	2.5	1.1	1.1	
NBRE ETP /iour	0.4	0.4	0.2	0.2	

TRAITEMENT DES MARCHANDISES SUR LES SITES DE REGROUPEMENT

IMPORTANT = PRISE EN COMPTE DES CONTENEURS VIDES!

OPERATIONS	DETAILS	PRODUCTIVITE	UNITE	OUTILS	PERSONNEL
PRE+POST-ACHEM.	déstockage + chargt PL	0.08	h /conteneur	chariot	conducteur
CHARGt FLUVIAL	stock vers quai fluvlal	0.04	h /conteneur	chariot	conducteur
DECHARGT FLUVIAL	quai fluvial vers stock	0.04	h /conteneur	chariot	conducteur
GESTION	gestion des sites	7.0	h /jour /site	-	chef de site

CONTENEURS ET TONNES	Conteneurs 7'		Conteneurs 10'HC		
CONTENEORS ET TONNES	SEPT-FONS	MULHOUSE	SEPT-FONS	MULHOUSE	
CONTENEURS max /sens	29	27	10	9	
VIDES	0	2	0	1	
TOTAL conteneurs	29	29	10	10	
TONNES	240	220	240	220	

DUREE OPERATIONS	OUTILS	SCENARIO 7' (en h		SCENARIO 10'HC (en h)	
DONEE OF ENATIONS OUTIES		SEPT-FONS	MULHOUSE	SEPT-FONS	MULHOUSE
PRE+POST-ACHEM.	chariot	2.16	2.32	0.72	0.80
CHARGt FLUVIAL	chariot	1.16	1.16	0.40	0.40
DECHARGt FLUVIAL	chariot	1.16	1.16	0.40	0.40
GESTION	-	7.00	7.00	7.00	7.00

données par jour

CHARIOT ET CONDUCTEUR	Conteneurs 7'		Conteneurs 10'HC		
CHARIOT ET CONDOCTEOR	SEPT-FONS	MULHOUSE	SEPT-FONS	MULHOUSE	
DUREE TOTALE (h)	4.5	4.6	1.5	1	1.6
Nbre matériel	1	1	1		1
utilisation unitaire (h)	4.5	4.6	1.5	1	1.6
NBRE ETP /jour	0.7	0.7	0.3	0	0.3
CHEF DE SITE	Conteneurs 7'		Conteneurs 10'HC		
CHEF DE SITE	SEPT-FONS	MULHOUSE	SEPT-FONS	MULHOUSE	
DUREE TOTALE (h)	7.0	7.0	7.0	7	7.0
NBRE ETP /jour	1.0	1.0	1.0	1	1.0

CARBURANT

AUTOMOTEUR

Consommation moyenne			0.20		
(L/CV.h)					
				_	_

pas de consommation durant le passage des écluses

PUISSANCE nécessaire	En charge	A vide
Rhin / Saône (CV)	134	88
Canal (CV)	18	12

CONSO CARBURANT	En charge	A vide
Rhin / Saône (litres)	26.8	17.6
Canal (litres)	3.6	2.4

PARCOURS	En charge	A vide	CONSO par trajet (litres)	CONSO /jour (litres) 7'	CONSO /jour (litres) 10'HC
Rhin / Saône	100%	0%	179	357	357
Canal	100%	0%	204	408	408
		-	LITRES /JOUR	765	765

consommation Distance (km/jour) 10'HC CONSO /jour (litres) 10'HC Distance CONSO /jour emi-remorque (litres/100km) (km/jour) 7' (litres) 7' PLATEAU 18 13.6 6.8 36 LITRES /JOUR 13.6

CAMIONS

CHIFFRAGE ROUTIER

EXPLOITATION

	ROUTIER TRAITES	COUT UNITAIRE /jour	Taux de facturation	COUT €/an	
SEPT-FONS	MULHOUSE	700 €	100%	1 540 000	(dont ECO TAXE)
retour TAUTLINER SEPT-FONS	- MULHOUSE	700 €	100%	616 000	
MULHOUSE	SEPT-FONS	700 €	127%	1 759 676	
			TOTAL /an	3 915 676 €	

FRAIS DE PERSONNEL SUR SITES		COUT UNITAIRE /jour	NBRE d'unités d'œuvre	COUT €/an
Main d'œuvre sur sites	caristes (€/ETP)	196 €	2.62	112 933 €
iviain a œuvre sur sites	chef de site (€/ETP)	252 €	2.00	110 880 €
·			TOTAL /an	223 813 €

BILAN ECONOMIQUE

	SCENARIO D	E REFERENCE	
	équivalent 7' équivalent 10'		
TOTAL	4 139 490	4 139 490	
NBRE CONTENEURS	12 320	4180	
conversion en EVP	2 200	2 200	
NBRE TONNES	101 200	101 200	
COUT €/conteneur	336 €	990 €	
COUT €/EVP	1 882 €	1 882 €	
COUT €/tonne	41 €	41 €	

EVALUATION ENVIRONNEMENTALE

EMISSIONS CO2	Ratio kg eq.CO2 /litre	conso	EMISSIONS DE CO2 (tonnes)
ROUTIER	2.95	913 264	2 694
		TONNES CO2	2 694

Données coûts externes transports	ROUTIER		
Congestion	2.50€	€/veh.km	
Accidents	0.043 €	€/veh.km	
Pollution atmosphérique	0.058 €	€/veh.km	
Bruit	0.011 €	€/veh.km	
Changement climatique	0.016 €	€/veh.km	
Amont/Aval	0.0187 €	€/veh.km	

Source: European Commission DG TREN. 2008

^{*}Source : Les coûts externes des transports. Etude d'actualisation. Infras/IWW. 2004

		NBRE D'UO	COUTS E	XTERNES
		ROUTIER	équivalent 7'	équivalent 10'HC
Congestion		2 268 750	5 671 875 €	5 671 875 €
Accidents		2 268 750	97 556 €	97 556 €
Pollution atmosphérique		2 268 750	131 588 €	131 588 €
Bruit		2 268 750	24 956 €	24 956 €
Changement climatique		2 268 750	36 300 €	36 300 €
Amont/Aval		2 268 750	42 426 €	42 426 €
	TOTAL (€)		6 004 701 €	6 004 701 €
	NBRE CONTENEUR	S	12 320	4 180
	conversion en EVP		2 200	2 200
	NBRE TONNES		101 200	101 200
	COUT €/conteneu		487 €	1 437 €
	COUT €/EVP		2 729 €	2 729 €
	COUT €/tonne		59 €	59€

DETAIL SCENARIO ROUTIER (situation initiale)

ORIGINE	DESTINATION	DISTANCE 100% ROUTE (km)	Tonnage annuel (tonnes)	Tonnes /jour	
SEPT-FONS	MULHOUSE	375	52 800	240	caisses
MULHOUSE	SEPT-FONS	375	48 400	220	vrac

Conteneurs en provenance des ports du Nord (BENELUX)

TAUTLINER

Poids moyen /caisse (t)	1.5	CAMIONS SOUS-TRAITES
Nbre de caisses /jour	160	
Nbre de caisses /camion	16	PLEINES
Nbre de caisses vides /PL	40	VIDES
Durée chargt /caisse (h)	0.042	
trajet à vide pris en charge	0%	

BENNES

transport en benne TP, non compressé

Chargt (h/benne)	0.50	С
Dechgt (h/benne)	0.50	l
TONNES MAX (t)	25	l
VOLUME MAX (m3)	50	l
trajet à vide pris en charge	50%	

CAMIONS SOUIS-TRAITES

besoin	de	caristes

ORIGINE DESTINATION	Distance aller (km)	Distance retour (km)	Vitesse moyenne (km/h)	temps de route ALLER (h)	temps de route RETOUR (h)	temps chargt + déchargt (h)	DUREE (A/R)
SEPT-FONS MULHOUSE	375	0	85	4.41	0.00	0.67	5.08
retour TAUTLINER SEPT-FONS - MULHOUSE	0	375	85	0.00	4.41	0.67	5.08
MULHOUSE SEPT-FONS	375	187.5	85	4.41	2.21	1.00	7.62

4 TAUTLINER rentrent avec conteneurs vides

Pour les autres camions, pour une partie, possible rechargement pour le retour => une partie prise en compte pour les BENNES et les TAUTLINER

Tps de service par camion (en heures / jour)

POSSIBLE JUSQU'À 10H /jour => supplément de coût

ORIGINE	DESTINATION	NBRE JOURS	NBRE DE CAMIONS /jour	TRAJET /camion /jour	facturation ?
SEPT-FONS	MULHOUSE	0.56	10	1	100%
retour TAUTLINER SE	PT-FONS - MULHOUSE	0.56	4	1	100%
MULHOUSE	SEPT-FONS	0.85	9	1	127%
		CAMIONS /jour	19		

Tps de travail par ETP (en heures / jour)	7	
	CARISTES (ETP/jour)	CHEF DE SITE (ETP/jour)
SEPT-FONS	0.95	1
MULHOUSE	1.67	1
TOTAL	2.62	2.00

CONSO TAUTLINER (litre/100km)	37.9
CONSO BENNES (litre/100km)	42.7

ORIGINE	INE DESTINATION		IMATION (litres)	CONSO /JOUR
SEPT-FONS	MULHOUSE		142.1	1421.00
retour TAUTLINER SEP	T-FONS - MULHOUSE		142.1	568.40
MULHOUSE SEPT-FONS			240.2	2161.80
		LITE	RES /JOUR	4151.20