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II. RAPPEL DU CONTEXTE 

L’objet de la recherche est de contribuer au corpus théorique et scientifique de l’analyse 
des coûts de déshorage dans les trois situations suivantes : la prise en compte de l’interaction 
des choix individuels au sein d’un couple, la problématique des coûts endogènes, et la prise en 
compte du problème de stationnement. A l’exception de la problématique du stationnement, 
les sujets abordés sont nouveaux. 

La démarche utilisée est analytique dans le sens où elle s’intéresse au développement de 
cadres théoriques d’analyse reposant sur des modélisations mathématiques de ces problèmes 
économiques, i.e. comment les politiques de tarification et de règlementation doivent-elles 
tenir compte des coûts de déshorage dans les trois situations envisagées ? 

 Ce rapport final présente trois contributions : la première porte sur l’analyse du trip 
timing et des préférences de déshorage, la deuxième sur la tarification du stationnement 
comme substitut à la tarification routière dans le cadre d’un modèle dynamique avec 
congestion et la dernière sur les files d’attentes aléatoires en présence d’usagers averses au 
risque.  
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III. TRIP TIMING - PREFERENCE POUR LES CHOIX DES HEURES 
DE DEPART  

Mogens Fosgerau, Technical University of Denmark et Center for Transport Studies, Suède 

André de Palma, Ecole Normale Supérieure de Cachan et Centre d’économie de la Sorbonne. 
CES, France 

Anders Karlstrom, KTH Royal Institute of Technology et Centre for Transport Studies, Suède 

Ken Small, University of California, Irvine, USA 

 

RESUME 

Ce rapport résume les résultats du projet intitulé SURPRICE: Trip timing and 
scheduling preferences. Dans ce projet nous nous focalisons sur l’importance de choix de 
l’heure de déplacement comme une des causes de la congestion. Il est important de 
reconnaître que le choix de l’heure de départ revient à l’usager et que la congestion se 
développe quand nombreux voyageurs décident de voyager au même moment. Pour la mise 
au point et l’évaluation d’un schéma de tarification, nous devons prendre en compte 
explicitement l’évolution de la distribution de l’heure de départ particulièrement si on 
applique une tarification modulaire. Sans prise en compte de choix de l’heure de déplacement, 
l’identification et l’évaluation d’une part important des bénéfices de tarification sera 
impossible et le schéma choisi ne pourra pas être optimal. Ce projet répond à 4 questions 
fondamentales dans la procédure de mise au point et d’évaluation des schémas de tarification 
des usagers : l’interaction entre la forme urbain et le choix de l’heure de déplacement, 
mécanismes alternatives de tarification pour l’utilisation optimale des capacités, la nature des 
préférences en choix de l’heure de déplacement et des modèles dynamiques d’affectation du 
trafic et la nature de l’équilibre dans ces modèles. 
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Abstract 
This note summarizes the results from the project SURPRICE: Trip timing and scheduling 
preferences. The general emphasis of this project is the importance of trip timing as a cause of 
congestion. It is important to recognize that departure time is a choice of travellers and that 
congestion arises because many travelers choose to travel at the same time. The design and 
evaluation of pricing schemes should explicitly take changes in departure time patterns into 
account, in particular with time-varying charges. Failure to take trip timing into account will lead 
to failure in identifying important benefits and will lead to less efficient pricing schemes. This 
project has addressed four fundamental questions of vital interest to the design and evaluation of 
road user charging (RUC) schemes: The interaction of urban structure with trip timing, 
alternatives to pricing mechanisms for allocating capacity, the nature of scheduling preferences 
and models for dynamic assignment and nature of equilibrium. 
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1 Introduction

The congestion of the morning rush hour is a prominent feature of urban life.

Aggregate congestion delay is a significant burden on industrialized economies

and much attention has been given to policy measures, notably pricing, that can

reduce congestion.

This note summarizes the results from the project SURPRICE: Trip timing and

scheduling preferences. The general emphasis of this project is the importance of

trip timing as a cause of congestion. It is important to recognize that departure

time is a choice of travellers and that congestion arises because many travellers

choose to travel at the same time. The design and evaluation of pricing schemes

should explicitly take changes in departure time patterns into account, in partic-

ular with time-varying charges. Failure to take trip timing into account will lead

to failure in identifying important benefits and will lead to less efficient pricing

schemes.

Most current traffic models are notoriously poor in incorporating trip timing.

Much remains to be done in making models both sufficiently realistic in this re-

spect and at the same time sufficiently simple for application. There are further-

more many remaining challenges at the conceptual level.

This project has addressed four fundamental questions of vital interest to the

design and evaluation of road user charging (RUC) schemes.

• The interaction of urban structure with trip timing

• Alternatives to pricing - mechanisms for allocating capacity

• The nature of scheduling preferences

• Models for dynamic assignment and nature of equilibrium

It is first important to understand and to be able to model trip timing in an

urban context. The challenge is that travellers, located at various distances from

their destination, face different scheduling constraints. This has an impact on

their choices and hence on the resulting equilibrium, such that the shape of the

rush hour depends on the spatial structure of a city. Hence spatial structure must

be taken into account when designing tolls. This project is the first to achieve this

goal in an analytical model.

Second, the view of congestion that recognizes equilibrium in the timing of

trips opens for alternatives to pricing. These could be a further development of

the high occupancy/toll (HOT) lanes and high-occupancy vehicle (HOV) lanes

that have been implemented in the US. Various ways can be devised of assign-

ing a share of capacity to designated groups of vehicles for some period of time

1
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during the peak. Such mechanisms have the potential to reduce congestion with-

out pricing and without capacity expansion. Under bottleneck queueing they can

be designed such that no traveller is worse off than before the scheme. This is

important for acceptability.

Third, in order to account for trip timing choices of travellers, it is necessary

to improve our current understanding of scheduling preferences. In particular,

while the state-of-the-art so far has treated scheduling preferences as exogenous,

it is reasonable to think that they are in fact endogenous: a commuter’s preferred

arrival time at work depends essentially on when everybody else arrive at work.

Taking this into account may change forecasts and assessment of the optimal toll.

Fourth, for applications it is important to understand the nature of equilibrium

in dynamic assignment models. In this project we will address the theory based on

concepts of equilibrium, and its relation to applied dynamic assignment models,

used in forecasting.

This project is the first to address these questions. The project has been carried

out in collaboration between leading researchers within transport economics from

Denmark, France, Sweden, and the US.

2 The interaction of urban structure with trip tim-

ing

The research that is summarized in this section has been published in Journal of

Urban Economics in a paper with the title "Congestion in a city with a central

bottleneck" (Fosgerau and de Palma, 2012). This paper presents a model that

integrates two prominent features of urban congestion, focusing on the exemplary

case of the morning commute. The first feature is that congestion is a dynamic

phenomenon in the sense that congestion at one time of day affects conditions

later in the day through the persistence of queues. The second feature is that trip

origins are spatially distributed. We analyze how these features interact in a city

with a central bottleneck and provide results concerning optimal pricing.

2.1 Background

The dynamics of congestion were analyzed in the seminal Vickrey (1969) bottle-

neck model (see also Arnott et al., 1993), which captures the essence of congestion

dynamics in a simple and tractable way. Travellers are viewed as having schedul-

ing preferences concerning the timing of trips that have to pass the bottleneck.

The analysis concerns equilibrium in the traveller choice of departure time.

The Vickrey (1969) analysis of congestion, however, essentially ignores space.

2
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Using the notation of the current paper, travellers are depicted as travelling some

distance c (measured in time units) until they reach a bottleneck at time a. They

exit the bottleneck to arrive at the destination at time t. They have scheduling pref-

erences, always preferring to depart later and always preferring to arrive earlier.

The Vickrey (1969) scheduling preferences can be expressed by the scheduling

cost α · c + α · (t− a) + D (t) , where α is the value of travel time, t − a is the

time spent in the bottleneck and D (t) = β ·max (0, t∗ − t) + γ ·max (0, t− t∗)
is a convex function capturing the cost of being early or late relative to some pre-

ferred arrival time t∗. This model is often called the "α − β − γ" model and the

preferences "α−β−γ" preferences. The Vickrey formulation of scheduling pref-

erences is additively separable in trip duration and arrival time and it is linear in

trip duration. So it is clear that the distance c to the bottleneck does not matter for

the Vickrey analysis of how travellers time their arrival at the bottleneck and the

ensuing congestion.1

It is not generally true that the distance from trip origins to the destination

is irrelevant for the timing of trips. Consider a traveller who always prefers to

depart later and always prefers to arrive earlier. Faced by a fixed trip duration that

is independent of the departure time, such a traveller will optimally time his trip

such that his marginal utility of being at the origin at the departure time equals

his marginal utility of being at the destination at the arrival time. If the marginal

utility at the origin is decreasing and his marginal utility of being at the destination

is increasing, then an increase in trip duration will cause him to depart earlier and

to arrive later. In this way the distance can matter for the timing of trips. This

paper concerns travellers with such scheduling preferences.

Congestion can arise when there is a bottleneck and many individuals who

want to pass the bottleneck at the same time. It is not a sufficient condition for

congestion to arise that travellers have similar scheduling preferences. Trip origins

must also be located with similar distances to the bottleneck. If trip origins are

sufficiently dispersed, then congestion does not arise as there is no overlap in the

times when travellers want to pass the bottleneck. Hence it is clear that the spatial

distribution of travel demand is a fundamental determinant of urban congestion.

This observation stands in contrast to the standard urban model, where congestion

increases with population dispersion.

This paper is the first to allow for spatial heterogeneity in the bottleneck model

in a meaningful way. In our model, heterogeneity is induced by the structure of the

city. A number of earlier contributions have considered preference heterogeneity

1The analysis of the bottleneck model has been developed and extended in various directions

by Arnott, de Palma and Lindsey in a series of papers; notably Arnott et al. (1993). These authors

use the above α − β − γ preferences or a version where the function D (t) has a more general

form. They always maintain linearity and additive separability of travel time and are hence unable

to analyse the consequences of distance for congestion.

3
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in the context of the bottleneck model (e.g., Vickrey, 1973; Arnott et al., 1994;

van den Berg and Verhoef, 2011). These papers work in the context of linear sep-

arable Vickrey (1969) scheduling preferences and heterogeneity is introduced by

varying α− β− γ, while maintaining the ratio β/γ fixed for reasons of analytical

convenience. Generally speaking, this sort of heterogeneity can induce travellers

to sort according to the degree of closeness to the center of the congestion peak;

in a two group case, sorting has the form that one group occupies a central time

interval while the other group occupies the early and late shoulders. In contrast,

this paper finds that travelers sort according to their distance to the bottleneck; this

occurs both under no tolling and under optimal tolling, and the result is derived

under quite general assumptions concerning scheduling preferences.2 Hendrick-

son and Kocur (1981), Smith (1984), Newell (1987), and Arnott et al. (1994)

consider the case of travellers with scheduling preferences, such as α−β−γ, that

are additively separable in trip duration and arrival time and who differ in their

preferred arrival time. In that case, travellers sort according to their preferred ar-

rival time, which is similar to what we obtain here. Kuwahara (1990) extends this

to a geometry consisting of two residential areas and a CBD with bottlenecks in

between. Travellers within each group then still sort according to their preferred

arrival time, but a strict sequence does not hold for the two groups together. The

present case is more involved, as travellers have different distances to the CBD as

well as strictly concave and non-separable scheduling preferences. We show that

the optimal arrival time a∗, in the absence of congestion, is increasing in distance

c, such that also here travellers sort according to their preferred arrival time.

Daganzo (2007) and Geroliminis and Daganzo (2008) show that several as-

pects of congestion in an urban area can be described as a form bottleneck con-

gestion. A space average of traffic measurements show that the trip completion

rate is a stable inverse u-shaped function of the number of vehicles present in the

system. Cars that have not yet completed their trips remain in the urban area,

such that it is possible to think of the system as a generalized sort of queue. See

Geroliminis and Levinson (2009). The bottleneck model supposes a constant trip

completion rate and a queueing system that maintains a first-in-first-out queue.

2.2 Findings

This paper has introduced spatial heterogeneity into the bottleneck model such

that it can be used to represent a city with a central bottleneck.

Our analysis first shows that under laissez-faire, travellers sort according to

their distance to the bottleneck such that those who are closest to the bottleneck

reach the destination first. However, in general there is not a monotonous relation-

2Lindsey (2004) considers more general heterogeneity with a finite number of user classes.

4
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ship between distance and departure time; it is not necessarily the case that those

who are located further away will depart earlier.

The paper goes on to consider equilibrium under socially optimal tolling at

the bottleneck. The toll can be taken to be zero for the first and last travellers

and strictly positive for everybody else. The optimal toll exactly removes queue-

ing. The sequence of arrivals at the destination is preserved from the laissez-

faire equilibrium.3 However, in contrast to the Vickrey analysis with homogenous

travellers, arrivals at the destination occur earlier in social optimum than under

laissez-faire. When the use of toll revenues does not affect the utility of travellers,

then the toll just represents a loss for them. This is compensated to some extent by

a gain in utility. Comparing social optimum to laissez-faire reveals that those who

are located furthest away from the bottleneck will experience a net gain, while

those who are located near the bottleneck will experience a net loss.

A number of new insights are generated from the model. Perhaps the most

important insight is that travellers located near the bottleneck will tend to lose

from optimal tolling, while those located far away will tend to gain, when the use

of toll revenues is not accounted for. The paper also shows that a reason for the

congested demand peaks to be uni-modal can be found in the properties of equi-

librium in combination with our general specification of scheduling preferences.

2.3 Scientific perspectives

The spatial distribution of travellers is a source of heterogeneity in the model. It

would be of interest to introduce other sources of heterogeneity into the model.

One issue would be the robustness of the sorting property. Another kind of exten-

sion would be to introduce risk into the model, for example in the form of random

capacity (Arnott et al., 1999) or random queue sorting (de Palma and Fosgerau,

2011).

Perhaps the most interesting extension would be to make the location of indi-

viduals endogenous as in the Mirrlees (1972) standard urban model. This would

tie together congestion dynamics and urban economic models. For example Arnott

(1998) combines a model of urban spatial structure with the α− β− γ bottleneck

model; optimal tolling does not change transport costs for travellers so when the

revenues are not returned, optimal tolling will have no effect on urban structure.

As Arnott (1998) notes, this is in contrast to urban economic models with static

congestion. However, the Arnott (1998) result is a consequence of space essen-

3Arnott et al. (1991) consider a variant of the standard bottleneck model in which drivers have

to park, and parking spots are located at varying distances from the CBD. In the laissez-faire

user equilibrium, drivers park in order of increasing distance from CBD. The optimal location-

dependent parking fee reverses this pattern. This contrasts with the present setting where optimal

tolling does not change the order of arrivals.

5
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tially being assumed away in the specification of preferences as described in the

paper’s literature review.

3 Alternatives to pricing

The research that is summarized in this section has been published in Transporta-

tion Research Part B in a paper entitled "How a fast lane may replace a congestion

toll" (Fosgerau, 2011). This paper considers a fast lane scheme as a means to

regulate congestion in a regularly occurring demand peak.

3.1 Background

The fast lane scheme plays explicitly on the dynamics of congestion, which makes

the Vickrey (1969) bottleneck model an appropriate framework. The elements of

the basic bottleneck model are a description of the queueing technology in the

bottleneck, a continuum of identical travellers with scheduling preferences who

have to pass the bottleneck, and the concept of Nash equilibrium in arrival times

at the bottleneck.

The fast lane scheme allocates the bottleneck capacity to different classes of

travellers. The scheme is the following.

A set of travellers is assigned to a priority group. Not all travellers can be

given priority. A more than proportional share of capacity is reserved for the

priority group. When the reserved capacity is not used, it is available for the

nonprioritized travellers.

This is similar to, e.g., the check-in in airports with separate queues and servers

for economy and business class passengers. Whenever the business class server

is idle, it may serve passengers from the economy class queue. Another example

is the HOV or HOT lanes as found on US motorways. Yet another example is the

flows at different motorway on-ramps that could be given different priority (Shen

and Zhang (2010) consider such a scheme). Even though such a scheme is called

a fast lane scheme in this paper, the definition encompasses many other policies

that do not involve the allocation of road lanes for different classes of vehicles; it

is more general than allocation of lanes.

The paper compares the fast lane scheme to tolling. Like Arnott et al. (1990),

this paper considers a coarse toll, which is a constant toll that applies only during

part of the peak.4 Arnott et al. (1990) found that Nash equilibrium under a coarse

toll comprises a point mass in the arrival schedule at the time when the toll is

lifted. This is an undesirable feature of their model as such point masses are

4Arnott et al. (1990) applied also a base toll level. This paper considers the coarse toll only

under inelastic demand and so the base toll level does not matter.

6
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physically implausible. The problem is avoided in this paper by a reformulation

of the queueing technology. In this paper, the congestion technology is such that

travellers who choose not to pay the toll can queue at the same time as travellers

who are paying the toll pass the bottleneck. This is also true of the examples of

fast lanes given above. In this case, a point mass in the arrival schedule does not

arise. The analysis below uses the reformulated queueing technology and repeats

the Arnott et al. (1990) analysis of a coarse toll under this assumption.

3.2 Findings

The first main result of this paper is that the fast lane scheme is always Pareto

improving when demand is not price sensitive. There are no restrictions on how

large the group of prioritized travellers should be as long as it is fixed exogenously.

Prioritized travellers experience a strict utility gain while the properties of Nash

equilibrium imply that nonprioritized travellers do not lose. It is significant that

this occurs even when travellers are homogenous and there are no toll payments.

This robustness is very desirable since it means that a regulator needs little infor-

mation to implement the scheme and be certain to achieve a welfare improvement.

In fact, the regulator can monitor traffic in real time and assign capacity accord-

ingly. This is consistent with the way the fast lane scheme is formulated in the

model. With price sensitive demand, the fast lane scheme is still welfare improv-

ing if the price elasticity of demand is not too high and the share of prioritized

travellers is not too large.

The second main result of this paper is that the fast lane scheme can reproduce

the equilibrium arrival pattern of the optimal coarse toll when demand is not price

sensitive.5 In fact, the scheme can reproduce the equilibrium arrival pattern of

any coarse toll, provided that the tolling interval is the same as the arrival interval

that a prioritized group would endogenously select. This is significant since the

fast lane scheme has a number of advantages over tolling. First, the fast lane

scheme is always welfare improving and can be adjusted in real time. In order

to set the right coarse toll it is necessary to know exactly when to start and when

to end the tolling interval. Mistakes will reduce the welfare gain from tolling

and can even lead to a welfare loss. Second, it is plausible that system costs

can be a lot lower for a fast lane scheme than for a toll as the fast lane does not

involve any payment. Finally, as there is no payment, a fast lane scheme may

be more acceptable to travellers than tolling. Within the simple theoretical model

5Using α− β − γ scheduling preferences, Knockaert et al. (2010) show that the coarse charge

user equilibrium can be obtained by barring a certain group from travelling during the charging

period and letting the remainder of drivers travel in that period without paying any charge. The

present fast lane scheme does not have to designate specific time periods for specific groups of

travellers. Moreover, the result is shown to hold for quite general scheduling preferences.

7
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presented here, prioritized travellers would be strictly better off under the fast lane

scheme than under no policy, while the remaining travellers would be indifferent.

In contrast, all travellers would be indifferent between tolling and no policy as toll

revenues are not returned to travellers. This property of fast lanes may explain why

fast lanes have been introduced while there is generally a reluctance to introduce

tolls.

A notable feature of the present paper is the formulation of scheduling utility

which generalizes those employed by Vickrey (1969, 1973), Arnott et al. (1990,

1993), and many others. Here, scheduling utility is taken to be a strictly concave

function of times at which the trip starts and ends. Travellers prefer to depart

later and to arrive earlier. For any fixed travel time there is a unique preferred

departure time. These assumptions are sufficient for the results of this paper. The

paper establishes that the socially optimal fast lane scheme achieves more than

half the welfare gain of the socially optimal continuously time varying toll. This

generalizes the parallel result by Arnott et al. (1990) for the coarse toll under their

first-in-first-out congestion technology to the present formulation of scheduling

utility combined with parallel queueing.

3.3 Scientific perspectives

It is straightforward but tedious to generalize the results of this paper to tolls with

more steps and fast lane schemes with more user classes.6 The general conclusion

remains that fast lanes can achieve the same benefits as step tolls when demand is

not price sensitive. It is also straightforward to see that a sequence of step tolls,

and hence a sequence of fast lane schemes, can be constructed that approach the

optimal time varying toll. In the limit, the step toll would become the optimal

continuously varying toll while the fast lane scheme would become equivalent to

allocating a specific time slot to every traveler.

A potentially useful feature of the fast lane scheme is its robustness. As long

as demand is not too elastic, or as long as the share of prioritized travellers is no

too large, then any fast lane scheme satisfying the conditions set up in the paper

is welfare improving. If demand is not price sensitive, then any such fast lane

scheme is Pareto improving. An interesting direction for further inquiry is how

this robustness can be utilized. Is it the case that the fast lane scheme retains

its favorable properties when some element of stochasticity is introduced into the

model?

6Laih (1994) showed that it is straightforward to extend the coarse toll to a multistep toll. It is

similarly straightforward to extend a fast lane scheme in this way. Laih (1994) did not recognize

that it was necessary to reformulate the queueing technology in order to obtain his results. This

was rectified in Laih (2004).

8
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4 The nature of scheduling preferences

This research appears so far in a working paper "Endogenous scheduling prefer-

ences and congestion". It concerns a version of the model in which travellers do

not have exogenous scheduling preferences. Instead they care about leisure and

consumption. Both (effective) leisure and consumption are produced under in-

creasing returns to scale. This, in combination with bottleneck congestion, leads

to scheduling preferences arising endogenously in equilibrium. The importance

for policy of this insight lies in the possibility that policies that affect congestion

also affect scheduling preferences. This makes the effect of policies harder to

assess ex ante.

4.1 Background

Static models of congestion use a static representation of demand in combination

with a technology that relates travel cost to the number of travelers (see, e.g.,

Small and Verhoef, 2007). In essence, these models are based on the view that

congestion occurs simply because many people want to travel to the same place,

using the same infrastructure.

More recently, dynamic models of congestion take into account that conges-

tion varies continuously over time and that conditions at one time affect conges-

tion at later times. These models essentially view congestion as arising because

many people want to go to the same place at the same specific time. For example,

in the well-known Vickrey (1969) bottleneck model, this desire is hard-wired in

individuals’ utility functions through the concept of scheduling preferences for

being at specific places at specific times; it is those preferences that explain the

occurrence of congestion.

However, it seems plausible that the preferences for starting work at certain

time are not innate, but arise for a reason. Thus Henderson (1981) posits agglom-

eration forces at the workplace to explain them, and Hall (1989) discusses rather

generally how thick-market efficiencies lead to temporal agglomeration at various

time scales. Such effects may explain the strong tendency for production to con-

centrate in the hours 9-12 a.m. and 1-5 p.m. We use this intuition to motivate an

assumption that worker productivity increases in the number of people at work.

We apply the same reasoning to time off work, assuming that productivity in

the production of effective leisure increases in the number of people off work at

any given time. This is a reasonable assumption considering that many leisure

activities are social, and others involve family members caring for each other.

In this paper we take workers simply to have preferences defined over leisure

and consumption. We consider the morning commute with bottleneck congestion

between home and work. Agglomeration economies at home and at work lead to

9
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temporal agglomeration which in turn entails congestion. Thus, we present a view

in which congestion occurs because people want to be at a place at the same time

as other people are there.

4.2 Findings

It turns out that scheduling preferences of the kind assumed by Vickrey arise en-

dogenously in equilibrium. That is, an individual taking equilibrium as given will

appear to have scheduling preferences in the form of a utility function that depends

on when the commute starts and ends. These scheduling preferences belong to a

general class that, as far as we are aware, comprises all those specifications that

have been considered by Vickrey and later authors in the context of the bottleneck

model. We derive some properties of Nash equilibrium for this general class, in

order to compare its predictions to those of our model, where the scheduling pref-

erences arise endogenously. This allows us to evaluate the errors that result if

policies aimed at regulating congestion are developed assuming incorrectly that

scheduling preferences are exogenous.

We find that the assumption of exogenous scheduling preferences would lead

an analyst to underestimate the benefit of congestion tolling. If the use of toll

revenues does not affect workers, then an analyst relying on a Vickrey-like model

would find workers to be indifferent between the situations with no or optimal

tolling. This sort of conclusion is not available in the model with endogenous

scheduling preferences, where travellers may either gain or lose from optimal

compared to no tolling.

The results concerning optimal capacity provision and the marginal external

cost of congestion are also ambiguous in general concerning the relative sizes

of these under endogenous and exogenous scheduling preferences. We examine

these and other properties of the two models using numerical simulations with a

Cobb-Douglas utility function and simple power functions to describe agglomer-

ation.

A few previous contributions analyze congestion and agglomeration economies

in combination. Henderson (1981) analyses scheduling of work hours and work

trips, based on the effect of agglomeration economies at work on wages and ex-

ogenous preferences concerning the timing of leisure. Wilson (1988) finds empir-

ical evidence supporting the idea behind Henderson’s model, namely that agglom-

eration economies at work cause workers to earn more if they start work during

peak hours. Arnott (2007) reviews these papers and further applications, while

adding his own innovation (still within a static framework) by allowing aggregate

labor supplied to be affected by congestion tolls via a reduction in their net wage.

We employ a more general specification of agglomeration economies at work

and introduce agglomeration economies in the production of leisure. Furthermore,
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we substitute bottleneck queuing for Henderson’s model of flow congestion; we

thereby bypass certain inconsistencies that can arise between flow congestion in

a dynamic setting and traffic dynamics (Chu, 1995), and take advantage of ana-

lytical advances that have accumulated in the many papers applying bottleneck

queuing to analyze equilibrium scheduling (e.g., Vickrey, 1969, 1973; Newell,

1987; Fargier, 1983; Arnott et al., 1993).

This paper has presented a dynamic model of traffic congestion in which

scheduling preferences arise endogenously. A naive analyst - observing equi-

librium and assuming scheduling preferences to be exogenously given - would

then make errors in predicting the effect of policies such as capacity expansion

and tolling. The naive analyst would fail to identify one cost of queueing, namely

the decrease in productivity of work and leisure that follows when some are stuck

in traffic. Hence such an analyst would underestimate the benefit of a toll that

removes queueing. Also, for some parameter sets, such an analyst would apply a

toll schedule and/or aim for a departure pattern that is quite far removed from the

optimal one. So a take-away of this paper for policy is that a gradual approach

to introducing a policy such as road pricing is advisable, since that allows the

consequences to be observed as one goes along.

The model with endogenous scheduling preferences generates an equilibrium

that is indistinguishable from a model with exogenous scheduling preferences. It

is hence not possible to falsify the latter model using only observation of individ-

ual choices in a single equilibrium; rather, in order to identify endogeneity, it is

necessary to compare different equilibria. It may be possible to employ such an

identification strategy empirically, for example by using capacity expansion or the

introduction of a road pricing scheme as an exogenous instrument in an empirical

investigation explaining variations in the temporal shape of the morning peak.

Humans are social animals and so it is entirely natural that the scheduling pref-

erences of one individual should depend on the scheduling choices of others. We

have shown that it is possible to model such a situation and that this interdepen-

dence affects transportation policy.

4.3 Scientific perspectives

There is a literature on social interactions (Manski, 2000), and traffic congestion

may be viewed as an example of a social interaction. The social interactions in

our model may be interpreted as occurring roughly at the level of a city. However,

it seems likely that smaller scale interactions are also relevant. It would be inter-

esting to develop, both theoretically and empirically, models of such interactions

down to the scale of appointments between small groups of travelers.
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5 Models for dynamic assignment and the nature of

traffic equilibrium

An outstanding problem in transportation economics is the notion of traffic equi-

librium. Consider the case where a number of individuals each morning choose

departure time and route when going to work on a congested road network. This

situation may be considered as a game, where each individual’s utility (general-

ized cost, including time, monetary cost etc.) is affected by the strategies (depar-

ture time and route given information at hand) of the other individuals travelling

in the morning commute.

A Nash equilibrium occurs when no commuter can be better off by unilaterally

changing departure time and route, taking the strategies of all other commuters as

granted. The Nash equilibrium is an extremely natural concept. It is also very

useful since it allows us to predict the aggregate response to changes in policy.

So it is very relevant to ask whether Nash equilibrium is a realistic description

of actual behaviour. That requires that there is some process that can lead actual

travellers to the equilibrium.

We can imagine that commuters are able to observe their own utility associated

with the choice of departure time and route they made yesterday, under the condi-

tions that prevailed yesterday. They may also be assumed to be able to observe the

utility they would have acheived under alternative choices. Based on information

of this kind, they make a new choice of departure time and route today. All com-

muters update their choices in this way and so the aggregate morning commute

changes from day to day. The question is then whether such a process reaches

a stable situation. Does simple heuristic learning rules exist that individual com-

muters can use to update their choice such that the aggregate converges towards an

equilibrium? If not, then we (as researchers) have to reconsider our understanding

of what it is that we observe and find new ways of making predictions.

Let us here briefly summarize what is known about the existence of conver-

gent algorithms and learning equilibrium in this class of games. First, consider

a static routing game in a network where players choose a route from origin to

destination which is fixed (no en-route adaptation) and where all individuals trav-

elling a particular link affect each other symmetrically. The timing of events is

not important in this situation. This is a standard congestion game which has a

number of important and nice features. For this class of games there exists a very

intuitive and appealing learning rule. As individual simply update their path to-

wards better paths, this process will converge towards a Nash equilibrium from

any starting point. This follows from the fact that the game is a potential game,

and the learning process will move towards a local optimum of the potential func-

tion. The potential function is a macro concept: it captures the state of the game
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on a macroscopic level as individuals take decisions at the micro level. On a

fundamental level, the potential function can be found by taking the limit of the

dynamic process at the micro level. Mathematically, this limit between micro and

macro is similar to the limit between quantum mechanics and classical mechanics

in physics. In physics, it is known as the correspondence principle: we are able

to analyze the behavior of the system on the macro scale (equilibrium) without

have to worry about the details of the behavior on the micro scale (individual be-

havior). This is a very useful property when analyzing proposed policy measures

(Karlstrom, 2012).

Second, consider the departure time game, where individuals only choose de-

parture time. This game is not a potential game, but it still has some interesting

properties. As has been shown in Hu and Fosgerau (2012), this game can be for-

mulated as a stable game. This means that processes exist that converge to an

equilibrium but, as far as we know, it is not the Nash equilibrium discussed above,

but a noisy, probabilistic equilibrium.

Third, in a recent paper Young and Pradelski (2010) show that a particular

heuristic simple learning mechanism will converge to a socially optimal Nash

equilibrium in any game that exhibits at least one pure strategy Nash equilibrium.

This shows that it may be possible to devise algorithms that calculate the social

optimal Nash equilibrium in the static congestion game above, which does exhibit

pure strategy Nash equilibria.

Finally, consider a dynamic routing game where the timing of entering links

determines how different players asymmetrically affect the travel time of other

players. For instance, one may assume that cars behind do not affect the travel

time of cars further ahead.7 This game is not a potential game, and much less

is known about convergent algorithms or learning mechanisms that converge to-

wards an equilibrium. In this dynamic routing game, it is unknown whether there

exists a pure strategy equilibrium. It is also unknown whether it is a stable game.

Likewise, less is known when introducing departure time into the dynamic routing

game.

In summary, policy analysis so far has simply taken for granted that Nash

equilibrium is a good description of what we observe in reality and has used that

concept to predict the effect of policies. The strand of research discussed in this

section investigates whether Nash equilibrium is the relevant equilibrium concept.

The insights regarding convergence of learning mechanisms is also useful for de-

vising algorithms that compute equilibrium in traffic simulation models.

7This is not universally true in all networks.
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RESUME 

On considère le modèle du goulot d’étranglement pour le pic du matin. Une tarification 
qui dépend continument de l’heure de la journée permet d’éliminer la congestion (et permet 
de réduire le coût généralisé des utilisateurs de moitié). Le coût supporté par l’usager est la 
somme du temps de trajets et du coût de déshorage associés aux arrivées précoces ou tardives 
à la destination. 

On considère dans un premier temps le cas de la demande inélastique. La tarification 
optimale augmente d’abord au cours du temps et ensuite diminue. Elle est maximale pour 
l’automobiliste qui arrive à la destination juste à l’heure. On envisage dans cet article d’autres 
modes de tarification, dans lesquelles les usagers paient à la destination : en d’autres termes 
on étudie l’efficacité de la tarification des stationnements. On se place dans un cadre 
dynamique, de sorte que la tarification du stationnement dépend de l’heure d’arrivée des 
usagers à la destination. Ce type de tarification introduit évidemment des contraintes. Par 
exemple si un automobiliste A arrive plus tard que l’automobiliste B, le premier paiera 
davantage (ou la même chose) que le premier, si les temps de départ de la destination sont les 
mêmes. 

On montre que la tarification du stationnement est nulle jusqu'à ce que la file d’attente 
commence et ensuite elle diminue avec le temps d’arrivée. On calcule la perte d’efficacité vis-
à-vis de la solution optimale de premier rang (tarification de la route). Enfin, on analyse les 
pertes d’efficacité, si certain usagers ne peuvent être tarifés. 

Lorsque la demande totale est élastique, la tarification en début de journée n’est plus 
nulle, mais fonction de l’élasticité de la demande au coût généralisé. 

Mots clé: Tarification du stationnement, Congestion, Politique de tarification, Modèle 
dynamique. 

Codes JEL: D00; D80 

  

2727



ARTICLE 

 

  

2828



The dynamics of urban traffic congestion and
the price of parking∗

Mogens Fosgerau
mf@transport.dtu.dk
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Abstract

We consider commuting in a congested urban area. While an efficient
time-varying toll may eliminate queuing, a toll may not be politically feasi-
ble. We study the benefit of a substitute: a parking fee at the workplace. An
optimal time-varying parking fee is charged at zero rate when there is queu-
ing and eliminates queuing when the rate is non-zero. Within certain limits,
inability to charge some drivers for parking does not reduce the potential
welfare gain. Drivers who cannot be charged travel when there is queuing.
In some cases, interaction between morning and evening commutes can be
exploited to remove queueing completely.

Keywords: parking; dynamic; congestion; urban; traffic
JEL codes: D0; R4

∗Fosgerau: Technical University of Denmark; Centre for Transport Studies, Sweden; Ecole
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1 Introduction

Traffic congestion is an economically important problem affecting cities every-

where. An average American household travels annually about 20,000 miles on

roads and spends about 15% of income on road transportation.1 In 2010, con-

gestion in the US caused around 4.8 billion hours of travel delay and 1.9 billion

gallons of extra fuel consumption with a total cost of $101 billion (Schrank et al.,

2011). Thus, policies to reduce the cost of mobility by car are of first order im-

portance. This paper considers the possibility of using parking fees rather than

congestion pricing to regulate urban congestion by influencing the timing of trips.

Economists have advocated marginal cost pricing of road capacity as a means

to improve efficiency for more than 100 years. However, very few cities have ac-

tually implemented congestion tolls, notably Stockholm, Singapore, and London.

Congestion tolls have been proposed and then scrapped in many places, including

New York, Hong Kong and Copenhagen. So there seems to be important political

obstacles to congestion tolls and it is therefore of interest to look for alternative

policies that can address road congestion.2 It is natural to look at parking pric-

ing, since parking is already priced almost everywhere. Another reason, noted by

Shoup (2005), is that the technology needed to charge for parking is much simpler

than that needed to charge for driving in congested traffic.

It is straightforward that the demand for trips to a city center is affected by the

full price of the trip, including the price of parking. But the problem is not just the

volume of traffic: the timing of demand is extremely important as is evident from

the sharp demand peaks that characterize urban traffic. The physics of congestion

1http://nhts.ornl.gov/2009/pub/profile 2012.pdf and http://www.bls.gov/cex.
2De Borger and Proost (2010) discuss the political economy of road pricing.
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implies that the amount of congestion delay is strongly dependent on the timing

of trips. If only departures from home in the morning became more dispersed

in time, then congestion delay could be much smaller while arrival times could

be quite unaffected. So there is a large potential efficiency gain in the retiming

of trips, even if the total traffic volume is unaffected. Congestion tolling aims to

achieve such temporal dispersion by applying a toll that varies over time with the

amount of congestion. The purpose of this paper is to explore the potential for

time-varying parking pricing to achieve the same effect.

We use a generalized version of the Vickrey (1969) bottleneck model for this

purpose (de Palma and Fosgerau, 2011a). The bottleneck model captures the

essence of congestion dynamics, describing a continuum of drivers equipped with

preferences regarding the timing of a trip to a common destination. This desti-

nation is located behind a bottleneck with a fixed capacity. If the rate at which

drivers want to pass the bottleneck exceeds its capacity then delay results.3 The

delay is a pure loss and it could be reduced with no effect on arrival times if people

could be induced to choose different departure times. A time-varying toll aims to

induce such rescheduling. As long as it induces appropriate rescheduling of trips,

it makes no difference where the toll is collected, it can be on any point of the trip.

In this paper we exploit that drivers park at the destination and pay a parking

fee. We will mainly consider a parking fee that accumulates at a non-negative

time-varying rate. This restriction fundamentally distinguishes such parking fees

from congestion tolls. Congestion tolls may vary freely up and down and may be

lower on the shoulders of the peak and high in the middle. A parking fee charged

3The bottleneck congestion technology is a means to represent city-wide congestion affecting
all traffic and the bottleneck does not necessarily correspond to any single place in a city (Daganzo,
2007; Geroliminis and Daganzo, 2008).
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at a positive rate during parking is always lower for later arrival times. As drivers

differ in the time at which they pass the bottleneck, they differ also in the parking

fee they pay. Therefore a parking fee can be used to induce rescheduling of trips

but in a less flexible way than a toll.

In summary, parking fees seem to be much easier to introduce than congestion

tolls. Like congestion tolls, parking fees may be used to disperse demand over

time in order to reduce congestion and gain efficiency, but the efficiency gain may

be limited by the restrictions inherent in typical parking fees. The objective of this

paper is to present an analysis of parking fees as a means to affect the timing of

road use and as an alternative to congestion tolls.4

We initially make assumptions that allow us to ignore the influence of the

time of unparking. We may think of the destination as the workplace, such that

the model describes the morning commute. For the morning commute, we find

that the imposition of a parking fee causes the departure interval to occur later

than it would in the absence of policy. This shift compensates the early drivers

who pay more for parking than later drivers. The optimal parking fee implements

a situation where every morning there is first an interval with a demand peak

that involves queueing just like an unregulated equilibrium except that it does

not involve everybody traveling in the morning. The optimal parking fee rate is

zero during this interval such that the total parking fee is the same for all these

drivers. The optimal parking fee becomes positive at the time when the queue has

dissolved and is set such that zero queue is maintained during the remainder of

the morning.

4The US Federal Highway Administration has a series of parking pricing projects under their
value pricing pilot program (in San Francisco, San Diego, and New York) that include time-varying
parking fee rates.
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It is a recurring theme in the debate about charging for parking that some

drivers cannot be charged since they have private parking available. In the current

situation, it turns out they make no difference provided they can fit within the

period where the optimal parking fee rate is zero and queueing occurs. Thus,

within this limit, the existence of private parking does not affect the welfare gains

that can be achieved from a parking fee.

Another way that drivers may escape the time-varying parking fee rate is

through early bird specials, providing all day parking at a discounted price for

drivers who arrive at a parking lot by a certain time such as 8 am. The paper

characterizes the welfare maximizing combination of an early bird special with a

time-varying parking fee rate.

After examining the morning peak, we show that the conclusions of the paper

extend with few modifications to the evening commute, where parking is charged

at the origin of the trip instead of at the destination.5 The optimal parking fee

affects the evening commute similarly to the morning commute, except that the

order of the congested and uncongested intervals is reversed and the departure

interval occurs earlier than it would in the absence of the parking fee.

The analysis so far ignores any interaction between the two commutes. The

paper also analyzes a whole day with explicit interaction between the two com-

mutes. Nonseparability between the morning and evening commutes implies that

the morning commute can be affected via the evening parking fee and vice versa.

5de Palma and Lindsey (2002) compare the morning and the evening commute, assuming that
scheduling utility is additively separable in travel time and delay, where delay is defined in terms
of arrival time for the morning commute and in terms of departure time for the evening commute.
Here, we apply a general form of scheduling preferences that applies to both the morning and the
evening commute. The difference in principle between the two commutes is whether the parking
fee is charged at the origin or at the destination of the trip.
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It turns out the limitations involved in parking pricing as compared to freely time-

varying congestion tolling can then be overcome, and in our stylized setting a

parking fee scheme can be designed to remove congestion completely during both

commutes simultaneously. This finding strengthens the case for using parking

pricing to tackle urban road congestion.

The first to discuss regulation of parking in an economic context might be

Vickrey (1954), who suggested time-varying parking fees as a means of regulating

the use of parking space. Glazer and Niskanen (1992) present an analysis where

parking fees are analyzed as a substitute for road pricing. They note that the idea

rests on the assumption that an increase in the price of parking is equivalent to

an increase in the price of a trip. However, this equivalence fails for people who

can vary the length of time they park. Increasing the parking fee rate may induce

drivers to park for a shorter time, thereby allowing more people to use parking

spaces each day and thereby increasing traffic. However, Glazer and Niskanen

(1992) do not consider congestion dynamics (see also Verhoef et al., 1995).

In a static simulation model, Calthrop et al. (2000) analyze the efficiency gains

from parking fees and road pricing (a cordon toll). They find that these two poli-

cies are sub-additive: as roads are more efficiently priced, there is less need for

pricing of parking. In contrast to us, they also find that second-best pricing of

parking produces a higher welfare gain than a cordon charge around the simulated

city. The explanation for this difference is that they consider the supply of park-

ing but no congestion dynamics, where we take the supply of parking as given and

consider how to exploit congestion dynamics using a time-varying parking fee.

Like us, Arnott et al. (1991) use the bottleneck model, but they consider a

case where parking spaces are located between the bottleneck and the CBD, on
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a line away from the CBD and where the parking cost varies according to the

distance to the CBD. In their analysis, the parking fee does not depend on the

length of time the vehicle is parked. Arnott et al. (1991) find that optimal location-

dependent parking fees do not eliminate queueing, but induce drivers to park in

order of decreasing distance from the CBD, thereby concentrating arrival times

closer to work start times. They find that for most reasonable parameter values, the

optimal location-dependent parking fee is at least as efficient as the optimal time-

varying road toll. In contrast, in the present setting where parking is located at the

destination and with temporal but not spatial variation in the parking fee, only a

smaller share of the efficiency gain from the optimal road toll can be realized by

a parking fee. Qian et al. (2012) present an analysis similar to Arnott et al. (1991)

but with parking capacity provided in two parking lots, where the capacity and

parking fee may be regulated.

Arnott and Rowse (2009) focus on different aspects of parking. They analyze

parking in a spatially homogeneous downtown area. Drivers choose between curb-

side and garage parking, and curbside parking is cheapest. Cruising for parking

contributes to congestion and works to increase the full price for curbside parking

until it equals the price of garage parking. Then increasing the curbside parking

fee may generate an efficiency gain through reduction of cruising and the ensuing

congestion and the efficiency gain may be large relative to the parking fee rev-

enue. Other papers related to cruising include Douglas (1975), Arnott and Rowse

(1999), Anderson and de Palma (2004), Arnott and Inci (2006), and Anderson and

de Palma (2007). Van Ommeren et al. (2011) estimates the cost of cruising for the

residents of Amsterdam. See also Proost and Van Dender (2008) and De Borger

and Wuyts (2009).
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Zhang et al. (2005) link the morning and evening commutes by treating the

length of the work day as a decision variable in a model similar to ours. They do

not analyze time-varying parking fees.

Section 2 introduces the model, Section 3 reviews the benchmark case of no

policy, while Section 4 reviews the optimal time-varying toll at the bottleneck.

Section 5 describes equilibrium under a parking fee, Section 6 considers the op-

timal parking fee, and Section 7 presents an example under specific assumptions

about scheduling preferences. Section 8 considers the case when some drivers

cannot be charged for parking and Section 9 characterizes social optimum in-

cluding an early bird special. Section 10 discusses the evening commute while

Section 11 considers the two commutes in combination. Section 12 concludes.

Most proofs are relegated to the Appendix.

2 Model formulation

There is a continuum of mass N > 0 of drivers who all have to pass a congested

bottleneck. They have identical preferences concerning the timing and cost of

their trip expressed by the twice differentiable money metric utility u (t, a) − τ,

defined for all t ≤ a and τ , where t is the arrival time at the bottleneck, a is the

exit time from the bottleneck and τ is the (monetary) cost of the trip. We speak of

the length of the duration from t to a as the travel time or the bottleneck delay. We

consider only costs in the form of a toll at the bottleneck or a parking fee at the

destination. We refer to u as the scheduling utility.6 Without loss of generality, t

represents also the departure time and a the arrival time at the destination. It is also
6A simple version of scheduling preferences have the so-called α− β − γ form formulated by

Vickrey (1969), estimated by Small (1982), and used by numerous authors since.
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useful to define the schedule delay utility v(t) ≡ u(t, t), which is the scheduling

utility that is obtained when travel time is zero. Throughout this paper we make

the following assumptions regarding the scheduling utility.

Assumption 1 Marginal scheduling utility satisfies u1 > 0 and u2 < 0. Schedule

delay utility v(t) is strictly quasiconcave and attains maximum v(t∗) at t∗.

The assumption first requires that drivers always strictly prefer to depart later

and to arrive earlier, no matter when they depart and arrive. The assumptions on

v will ensure the uniqueness of equilibrium in the model.

The bottleneck has a capacity of ψ cars per time unit. Cars who have not yet

been served wait before the bottleneck, which serves travelers in the sequence of

arrival (first-in-first-out). The bottleneck capacity is always used if there are cars

waiting before it. The physical extension of the queue has no consequences, we

say the queue is vertical.

Cumulative departures are denoted R (·) and departures take place during an

interval [a0, a1]. WhenR (·) is differentiable, we let ρ (·) = R′ (·) be the departure

rate. If queueing begins at time a0 and there is still queue at time t, then the queue

length at time t is R (t)− ψ (t− a0) and the driver departing from home at time t

exits the bottleneck at time

t+
R (t)− ψ (t− a0)

ψ
=
R (t)

ψ
+ a0. (1)

After passing the bottleneck, cars enter a parking space, which is vertical like

the queue. Drivers pay a parking fee at a positive time-varying rate from the time

of arrival at the parking lot until a time Ω which is the same for all drivers. The
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latter assumption allows us to focus attention on the interaction of the parking

fee with the departure time and rules out any interaction with the later departure

from the parking space. Specifically, it does not require that all cars have to leave

the parking space at time Ω. It is sufficient if utility is a separable part of a more

comprehensive utility that also describes preferences regarding times later than Ω,

Later, in Section 11, we shall consider a case without separability between the two

commutes.

We will not consider situations involving mass departures and so the cumu-

lative departure rate will be invertible. For this reason and since the queue is

first-in-first-out, we can make a change of variable and equivalently define the

parking fee rate π (·) ≥ 0 in terms of the departure time t. The parking fee for a

driver departing and arriving at the bottleneck at time t is then P (t) =
∫ Ω
t π (s) ds

and we consider only π such that P ′ (t) = −π (t).7

The analysis considers Nash equilibrium, which is defined by the property

that, given the departure schedule R, no driver is able to strictly increase utility by

unilaterally changing departure time. All drivers achieve the same utility in Nash

equilibrium. The welfare measure employed is the equilibrium utility of drivers

times the number of drivers plus the revenue from any toll or parking fee. Since

utility is the scheduling utility minus the monetary cost, the welfare measure is

equal to the total scheduling utility obtained by drivers.

7This avoids having to deal with issues related to sets of measure zero.
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3 No policy equilibrium

Consider as an introduction the case of no policy. Nash equilibrium has arrivals

at the bottleneck during an interval [a0, a1] , the endpoints of this interval are en-

dogenous and determined in equilibrium. Equilibrium requires that there cannot

be unused capacity during this interval, that there cannot be queue at the time of

the last departure and that the utility of the first and last drivers to depart are the

same.8 Then the departure interval is uniquely determined by the conditions

v (a0) = v (a1) ,

a1 = a0 +N/ψ.

The conditions imply that a0 < t∗ < a1, since v is strictly quasiconcave. There is

always queue in the interior of [a0, a1] . The equilibrium is illustrated in Figure 1.

In equilibrium, the number of departuresR (t) that have occurred at time t can

be determined using (1) by the equation

v (a0) = u

(
t,
R (t)

ψ
+ a0

)
. (2)

This determines R (t) since a → u (t, a) is invertible for all t. Moreover, differ-

entiating (2), the departure rate is given by

ρ (t) = −ψ
u1

(
t, R(t)

ψ
+ a0

)
u2

(
t, R(t)

ψ
+ a0

) > 0.

8If there were unused capacity with departures before or after then some driver could move
into the gap and gain. If there were queue at the time of the last departure, then the last driver
could postpone departure without affecting arrival which would yield a gain.
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v(t)

a0 a1t* t

Figure 1: Schedule delay utility and no policy equilibrium

Here and later, the departure rate is determined almost everywhere.

Figure 2 shows the cumulative departures R as well as the number of cars that

have passed the bottleneck ψ(t−a0). The vertical distance between the two curves

corresponds to the length of the queue and the horizontal distance corresponds to

the delay in the queue.

4 The optimal time-varying toll at the bottleneck

It is well known that a time varying toll can achieve maximum efficiency by re-

moving the incentive to queue (Vickrey, 1969, 1973; Arnott et al., 1993; de Palma

and Fosgerau, 2011b). The efficient toll is charged at the bottleneck at the time

varying rate τ (t). Since total demand is assumed to be completely inelastic, we

can set τ (a0) = 0 at no loss of generality. Efficiency requires v (a0) = v (a1) so

the efficient toll leaves the departure interval [a0, a1] unchanged relative to the no
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#drivers

N/

N

R(t)

(t-a0)

a0 a1 t

Figure 2: No policy equilibrium

policy equilibrium while maintaining the departure rate at ρ (t) = ψ. This requires

τ (t) = v (t)−v (a0) . It follows that the efficient toll inherits strict quasiconcavity

from v. Moreover, a0 < t∗ < a1, and the efficient toll is increasing on [a0, t∗] and

decreasing on [t∗, a1] . The revenue from the efficient toll is

TR = ψ
∫ a1

a0
(v (t)− v (a0)) dt.

Drivers achieve the same utility in equilibrium as under no policy and hence the

revenue from the efficient toll is equal to the welfare gain.

5 Parking fee equilibrium

Consider now a parking fee P (t) =
∫ Ω
t π (s) ds, where Ω is larger than any de-

parture time. By definition it is decreasing as a function of arrival time (since
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P ′ (t) = −π (t)) and hence it cannot replicate the efficient toll, which is increas-

ing early in the peak.

Some basic properties of equilibrium are given in the following theorem. The

proof is included here in the main text since it is helpful in motivating the condi-

tions of the theorem.

Theorem 1 Consider a parking fee schedule P (·) with

b0 < t∗ < b1 (3)

v(t)− P (t) ≥ v(b0)− P (b0)⇔ t ∈ [b0, b1] (4)

b1 = b0 +
N

ψ
(5)

π(t) + u2(t, t) < 0. (6)

Then ∆ ≡ P (b0) − P (b1) ≤ ∆∗ ≡ v (t∗) − v (a0) and there exists a unique

departure time equilibrium solution defined on [b0, b1]. b0 increases strictly as a

function of ∆ as ∆ ranges over [0,∆∗].

Proof. That ∆ ≤ ∆∗ follows from (3) and the quasiconcavity of v. Condition

(4) ensures that nobody will want to depart outside [b0, b1] and condition (5) en-

sures that all cars fit within this interval with capacity utilized throughout. Exis-

tence and uniqueness of equilibrium then follows if there exists a unique departure

rate maintaining constant utility for departures in [b0, b1] . Condition (4) ensures

that utility can be constant in equilibrium for departures within [b0, b1] with non-

negative queue length and this ensures that capacity is fully utilized during [b0, b1].

The equilibrium queue length exists uniquely and then so does the equilibrium de-

parture rate from home. Condition (6) ensures that the equilibrium departure rate
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v(t)





b0 b1t* tb*a0 a1

Figure 3: Equilibrium with parking fee

from home is strictly positive. The final conclusion of the theorem follows from

the strict quasiconcavity of v.

Define for convenience b∗ as the unique time b∗ > t∗ where v (b0) = v (b∗) .

The equilibrium is illustrated in Figure 3.

6 Optimal parking fee

Fixing the difference ∆ at some value and finding the corresponding departure

interval [b0, b1], welfare is maximized for a parking fee that extracts maximal rev-

enue while satisfying the condition (4).

Find the unique b∗ > t∗ with v (b0) = v (b∗) (see Figure 3). Let P (t) = P (b0)

for t ∈ [b0, b∗] . This satisfies the conditions of Theorem 1. It is also true that

R (b∗) = ψ(b∗ − b0), such that the queue is exactly gone at time b∗.

During the remaining time [b∗, b1] let P (t) = v (t)−v (b0)+P (b0) . This also
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satisfies the conditions of Theorem 1.

With this fee, utility is constant during [b∗, b1] so there can be no queue. There-

fore it is not possible to extract further revenue during this interval. We have

therefore established the optimal parking fee conditional on a value of ∆.

Assume without loss of generality that P (b1) = 0. The welfare function de-

fined in terms of ∆ is

W (∆) = ψ (b∗ − b0) v (b0) + ψ
∫ b1

b∗
v (t) dt. (7)

We can find the optimal value of ∆ as given in the following theorem. All proofs

of this and theorems following below are given in the Appendix.

Theorem 2 The optimal parking fee rate is

π (t) =


0, t ∈ [b0, b∗] ,

−v′ (t) , t ∈ ]b∗, b1] .

Assume further that v (·) is concave. Then the welfare function W (·) is quasicon-

cave on ]0,∆∗[, the welfare maximizing value of ∆ exists, is unique and satisfies

∆ = (b∗ − b0) v′ (b0) ∈]0,∆∗[.

The first statement of this theorem is that the optimal parking fee rate is zero

during the interval [b0, b∗] , which is the interval where there is queue under the

optimal parking fee. Thus all drivers in this interval pay the same total amount for

parking. The parking fee is concentrated on the interval ]b∗, b1] , where it ensures

that there is no queue.

Figure 4 illustrates the evolution of queue lenght under no policy and under
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R(t)-(t-a0)

N/

a0 a1 tb0 b* b1

Figure 4: Evolution of the queue under no policy and under the optimal parking
fee

the optimal parking fee. The dashed line shows that under no policy the queue

first builds and then dissipates between times a0 and a1 and that these times span

a duration of N/ψ time units. Queueing begins later at time b0 under the optimal

parking fee and it also ends earlier at time b∗. Departures continue during [b∗, b1]

at the capacity rate such that there is no queue during this interval. The latest

arrival at time b1 occurs later than it would under no policy.

7 Linear specification

This section specializes results to the case of so-called α − β − γ preferences

(Vickrey, 1969; Arnott et al., 1993). Let v (a) = β · min (a, 0) − γ · max (a, 0)

and let utility be u (t, a) − τ = v (a) − α · (a− t) − τ. Then α is the value of

time, the marginal cost of lateness is γ and the marginal cost of earliness is β.
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Let 0 < β < α, 0 < γ, as is typically assumed (Small, 1982). Then u satisfies

the requirements stated in Section 2. The following proposition, proved in the

Appendix, provides the optimal welfare gain in terms of the welfare function W ,

defined in (7). It thus states that the optimal welfare gain is obtained when the

difference ∆ in parking fee for the first and last drivers is equal to βγ
β+γ

N
ψ

. The

proposition also evaluates the welfare gain in that case.

Proposition 1 The optimal parking fee leads to a welfare gain of

W

(
βγ

β + γ

N

ψ

)
−W (0) =

N2

ψ

β2γ

2 (β + γ)2 .

The interval without queuing has duration

b1 − b∗ =
β

β + γ

N

ψ
.

Thus, a share β
β+γ

of drivers arrive during the later period when the parking

fee removes queueing. The maximal welfare gain corresponds to a share of β
β+γ

of the maximal welfare gain that can be obtained by a time-varying toll at the

bottleneck and the share is strictly less than 1/2 when β < γ as would commonly

be assumed. It is also straightforward to verify that the revenue from the optimal

parking fee corresponds to the same share of β
β+γ

of the revenue from the optimal

time varying toll. The optimal coarse toll, i.e. a toll that has only two values,

captures half the welfare gain that can be obtained by the optimal time-varying

toll (Fosgerau, 2011) and so the optimal parking fee approaches this welfare gain

when β is close to γ. These results are invariant under proportional changes in

(β, α, γ) . A value of γ/β in the range 2− 4 is reasonable and leads to an optimal
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welfare gain in the range [0.08, 0.11] ·N2/ψ, and this is between one fifth and one

third of the gain that could be obtained by the optimal time varying toll or between

two fifths and two thirds of the gain that could be obtained by the optimal coarse

toll.

8 Private parking

We consider now a situation where some drivers cannot be charged for parking.

This could be because they have private parking available that cannot be charged

by the public authority. Let N = Nc +Nu, where Nc is the number of drivers that

can be charged andNu is the number of drivers that cannot be charged. Drivers are

otherwise identical and they cannot affect whether they can be charged for parking

or not. This assumption enables us to focus on the direct effects of parking fees

without having to worry about selection into groups. Charged and uncharged

drivers share the same queue at the bottleneck.

Let the departures of uncharged drivers take place during Su withConv (Su) =

[bu0 , b
u
1 ] and similarly let departures for charged drivers take place during Sc with

Conv (Sc) = [bc0, b
c
1] .9 Let b0 = min (bu0 , b

c
0), and b1 = max (bu1 , b

c
1) . The follow-

ing theorem establishes some properties of Nash equilibrium.

Theorem 3 Consider a parking fee satisfying the assumptions (3-6) of Theorem

1. Then, in Nash equilibrium, capacity is fully utilized during [b0, b1] and b1 =

b0 +N/ψ. Uncharged drivers depart within the interval [b0, b∗] with b∗ < b1.

The theorem shows that uncharged drivers depart within the period when there

9Conv (·) denotes the convex hull; the convex hull of a set on the real line is an interval.
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is congestion and schedule delay utility v is largest. Some of the charged drivers

are induced to travel later and they all achieve lower utility.

Let Nu and Nc be given. We may then ask what is the optimal charge. Us-

ing Theorem 2 and the preceding discussion, the optimal charge that charges Nc

drivers satisfies v (bu0) = v
(
bu0 + Nu

ψ

)
and π (t) = −v′ (t) for t > bu0 + Nu

ψ
≡ bu1 ≡

bc0. Departures of charged drivers take place from bc0 to bc1 = bc0 + Nc/ψ. We have

∆ = P (bc1)− P (bc0) = v (bc1)− v (bc0) . In case ∆ is larger than its optimal value

from Theorem 2, then there can be an early period with zero charge for charged

drivers such that the optimum outcome is obtained. If on the other hand, the num-

ber of drivers that can be charged is less than the optimal number, then the optimal

charge under this restriction is the one just described.

9 Early bird specials

Early bird specials are common in cities around the world (Victoria Transport

Policy Institute, 2012) and they are targeted at commuters. Early bird specials

provide all day parking at a discounted price for all-day parkers who arrive at a

parking lot by a certain time such as 8 am. This section presents an analysis of how

early bird specials can be used to reduce traffic congestion and improve welfare.

An early bird special is given by (Neb, aeb, Peb) , where the discounted price Peb

is available to the first Neb drivers that arrive prior to aeb. This definition does not

require the constraints given by Neb and aeb to be binding and so it incorporates

the cases where either Neb and aeb is large, such that it is only the number of early

birds or the latest arrival time of early birds that is constrained. Denote by [e0, e1]

the interval during which the early birds travel.
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Drivers who do not receive the early bird special, we label regular drivers and

we carry forward all previous notation to them: regular drivers pay the regular

parking fee π, they travel during [b0, b1] and b∗ is the time after t∗ where v (b0) =

v (b∗) . The following theorem characterizes welfare optimum under a parking

fee combined with an early bird special. The welfare measure is again the sum

of driver utility and parking fee revenues, which is simply the scheduling utility

achieved.

Theorem 4 Under the socially optimal combination of a regular parking fee π

with an early bird special (Neb, aeb, Peb), capacity is fully utilized throughout a

period of length N/ψ, where b0 = e0 + Neb/ψ and b1 = e0 + N/ψ. The time-

varying parking fee is

π (t) =


0, t ∈ [b0, b∗]

−v′ (t) t ∈ ]b∗, b1] .

There is queueing during [b0, b∗] and no queue during [b∗, b1] . Departures begin

later than in unregulated equilibrium such that v (e0) > v (b1). The early bird

charge lies between the total parking fees paid by the first and last regular drivers

P (b1) < Peb < P (b0) .

Figure 5 illustrates the social optimum for the general case. Evaluating the

first order conditions for social optimum for the combination of a time-varying

parking fee with an early bird special in the case of linear scheduling preferences

as discussed in section 7 leads to e0 = −γ
2
β+2γ

(β+γ)2
N
ψ

and b0 = γ
β+2γ

e0, such that

b0 − e0 = 1
2

γ
β+γ

N
ψ

and the optimal share of early birds out of all drivers is 1
2

γ
β+γ

.

With γ/β in the range [2, 4] , this share lies in the range [0.33, 0.40] and it is always
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(t-e0)
#drivers

R(t)
#drivers

v(t)v(t)

N/

e0 b1 tb0 b*

Figure 5: Social optimum with early bird special

smaller than 1/2.

10 The evening commute

The analysis so far has concerned the morning commute, but with minor modi-

fications it applies to the evening commute as well. This section will show that

most conclusions carry more or less directly over from the morning to the evening

commute.

Recall first that the analysis of the morning commute ignored any interaction

with the evening commute, which could occur, e.g., through the duration of the

period at work. This simplification greatly facilitates analysis and will be retained

in the analysis of the evening commute.

Our general specification of scheduling preferences treats the departure time

and the arrival time symmetrically, so it is not specific to the morning commute,
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and applies equally well to the evening. We may consider scheduling preferences

that are specific to the evening commute with t∗ now being the preferred time of

instantaneous transfer from work to home.

The treatment of congestion can also be exactly the same in the two commutes.

Hence the evening no-policy equilibrium and the optimal time-varying toll exactly

parallel those of the morning.

The difference is in the effect of a parking fee paid at the origin of the trip

rather than at the destination. The parking fee is charged at the work place. Hence

it creates an incentive to reduce the time spent at the workplace. This is equally

true in both commutes. In the morning, the parking fee decreases with later de-

parture (from home), while in the evening the parking fee increases with later

departure (from work). This reversal has the effect of reversing the order of the

two distinct intervals under the socially optimal parking fee. Recall that in the

morning social optimum, there is first an interval of queueing, where the parking

fee rate is zero, this is followed by an interval where the parking fee rate is −v′

and where there is no queue. In the evening social optimum, the evening parking

fee rate is first equal to v′ during an interval and this maintains the departure rate

from work at the bottleneck capacity such that a queue does not arise. Later, in

the evening, the parking fee rate is zero and a queueing interval occurs.

Early birds or drivers with private parking are not affected, they have no in-

centive to depart early and will depart during the period when the parking fee rate

is zero. Thus the conclusions for the morning commute regarding drivers with

private parking carry over to these cases.
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11 Morning and evening commutes integrated

This section considers the morning and the evening commutes simultaneously and

shows that interaction between commutes can imply that a parking fee can be de-

signed to remove queueing completely. The parking fee is still restricted to be

positive at any time so a parking fee in the morning can only reduce queueing in

the morning but not remove it; similarly a parking fee in the evening can only re-

duce queueing in the evening. But it is possible to exploit interaction between the

two commutes that occurs through the length of the time spent at work. Then the

morning parking fee affects not only the morning commute but also the evening

commute through the length of the working day; similarly a parking fee during

the evening commute will affect the morning commute. Somewhat surprisingly,

queueing can then be removed in both commutes simultaneously.

Consider drivers who commute to and from work. In the morning they pass

through a bottleneck with capacity ψm, in the evening they pass through a bot-

tleneck with capacity ψe and the two capacities may be different. The departure

time from home in the morning is denoted tm, departures begin at time cm and

cumulative departures in the morning are denoted Rm. Capacity will always be

fully utilized during the commute such that cm+ Rm(tm)
ψm

is the arrival time at work.

The evening commute from home to work is denoted similarly with subscripts e.

We impose more structure on utility than we have before in this paper. In

particular we assume that utility is separable in utility achieved at home at rate hm

prior to departure, utility achieved at home at rate he after returning home in the

evening and utility achieved associated with the duration at work Γ.10 Define then

10This assumes that workers can decide how much time to spend at work on any given day. An
alternative would be to assume a fixed duration at work. This would however have the implication
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the money-metric utility function

u (tm, te) =
∫ tm

0
hm (s) ds+

∫ 0

ce+
Re(te)
ψe

he (s) ds

+Γ

(
te − cm −

Rm (tm)

ψm

)
−
∫ te

cm+
Rm(tm)
ψm

π (s) ds.

If it were the case that Γ′′ = 0, then the utility function would be additively

separable into a part depending only on tm and another part depending only on te.

In this case the morning and evening commutes could be analysed separately and

we would be back in the situation from previous sections. So we require that Γ >

0,Γ′ > 0,Γ′′ < 0. Moreover, utility rates hm, he satisfy hm, he > 0, h′m < 0 < h′e.

In order to guarantee existence of equilbrium it is sufficient (but not necessary)

to assume that there is a point in time where hm (t) = he (t) < Γ′ (0) and that

hm, he,Γ
′ all range from 0 to∞. Parking is charged at the positive time-varying

rate π (·) during the time spent at work.

It is clear from the previous analysis and for the same reasons as before that

there are two commuting intervals in equilibrium, that capacity is fully utilized

during these intervals if the parking fee is not too high, and that in each commute

the queue is exactly gone at the time of the last departure. We assume that utility is

such that the commuting intervals do not overlap. The equilibrium departure rates

can be found from the first order conditions for utility maximization. The next

lemma establishes that drivers pass the bottleneck in the same sequence in the two

commutes. The lemma also states some inequalities that hold in equilibrium since

that the departure rate from work would be the same as the arrival rate at work, and this is at most
a constant ψm. Then if ψm < ψe there would never be queue in the evening or if ψm > ψe there
would be an increasing queue at all departure times from work where capacity ψm is utilized. Both
implications seem strange.
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the first driver in either commute will not prefer to depart earlier and that the last

driver in either commute will not prefer to depart later, these are clearly necessary

conditions for equilibrium to occur.

Lemma 1 Drivers depart in the same sequence in the two commutes. There is a

range of equilibria, determined by initial departure times cm and ce. The following

inequalities hold in equilibrium:

hm (cm) ≥ Γ′ (ce − cm)− π (cm) (8)

hm

(
cm +

N

ψm

)
≤ Γ′

(
ce +

N

ψe
− cm −

N

ψm

)
− π

(
cm +

N

ψm

)
(9)

he (ce) ≤ Γ′ (ce − cm)− π (ce) (10)

he

(
ce +

N

ψe

)
≥ Γ′

(
ce +

N

ψe
− cm −

N

ψm

)
− π

(
ce +

N

ψe

)
. (11)

The equilibrium with equality in (8) and (11) is Pareto dominant.

The lemma shows that a range of equilibria are possible. In the absence of

queueing, the first driver would prefer to depart later from home. Likewise the

last traveler would like to leave earlier from work if there were no queue. All

drivers achieve the same utility in equilibrium. Therefore welfare is maximal if the

equilibrium is the one with equality in (8) and (11). The next theorem establishes

that it is possible to construct a parking fee that implements the Pareto dominant

equilibrium such that there is no queueing in either commute.

Theorem 5 Let times cm and ce > cm +N/ψm be given and define the function

f (tm) =
ψm
ψe

(tm − cm) + ce, tm ∈ [cm, cm +N/ψm] . (12)
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Assume that cm, ce satisfy the following conditions:

hm (cm) = Γ′ (ce − cm) (13)

he

(
ce +

N

ψe

)
= Γ′

(
ce +

N

ψe
− cm −

N

ψm

)
(14)

max {hm (t) , he (f (t))} ≤ Γ′ (f (t)− t) , t ∈ [cm, cm +N/ψm] . (15)

The following parking fee removes queueing completely and implements the unique

Pareto optimal equilibrium:

π (t) =


Γ′ (f (t)− t)− hm (t) cm ≤ t < cm +N/ψm

Γ′ (t− f−1 (t))− he (t) ce ≤ t < ce +N/ψe

0 otherwise.

The parking fee of the theorem implements a situation where the first commute

takes place during [cm, cm +N/ψm] with departures at the capacity rate ψm. The

definition (12) ensures that if drivers depart at the capacity rate ψm during the

first commute, then they depart at the capacity rate ψe during [ce, ce +N/ψe] .

Conditions (13-15) ensure that the parking fee rate is always positive and that

π (cm) = π (ce +N/ψe) = 0. The equilibrium conditions in Lemma 1 are all

satisfied with equality.

Compared to a situation with no parking fee and first departures still at cm and

ce, the welfare gain from the parking fee of the theorem is total parking fee pay-

ment during the two commutes. The parking fee during [cm, ce +N/ψe] when all

are at work is set to zero in the theorem but can be larger provided the equilibrium

conditions are not affected. The parking fee revenue during this period does then

not affect behavior (as we assume fixed demand) and does hence not contribute to
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any change in welfare.

12 Conclusion

This paper has analyzed the potential efficiency gains that may be realised through

retiming of commuting trips due to a time-varying parking fee charged at a pos-

itive rate at the workplace. At the social optimum, the commute to work is di-

vided into two distinct intervals by the optimal parking fee. During the first inter-

val, parking is free and there is queueing. During the second interval, parking is

charged at a time-varying rate such that there is no queue while capacity remains

fully utilized. The sequence of these two periods is reversed from the morning

to the evening commute. Parking fees create an incentive to reduce the length of

time spent at work.

With private parking, a group of drivers cannot be charged for parking. It turns

out not to matter for equilibrium departure time outcomes for the optimal charge,

provided the drivers who cannot be charged are few enough to fit within the con-

gested part of the commute. It is thus possible to exempt a group of drivers from

paying the parking fee without sacrificing the welfare gains that can be achieved.

Early bird specials may be designed to increase efficiency even further.

The analysis up to this point has treated the morning and evening commutes

separately. During either commute, a parking fee can reduce congestion but not

remove it. When there is interaction between the commutes through the duration

of time spent at work then it is possible to affect the evening commute through

a parking fee during the morning and vice versa. The paper has exhibited a case

where it is then possible to utilize the interaction to remove congestion completely
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during both commutes through a parking fee.

It is an essential characteristic of parking fees considered in the paper that the

total parking fee payment is decreasing as a function of the arrival time at work

in the morning and increasing as a function of the departure time from work in

the evening. This restriction leads to results that differ from the case of a time-

varying toll. If it were possible to charge for parking at a negative rate, then any

time-varying toll could be replicated and the well-known analysis of such a toll

could be applied.

It is straightforward to extend the results of this paper to the case of elastic

demand. A way to proceed is to let aggregate demand depend on the average

utility obtained in equilibrium. The optimal toll can then be obtained by fixing

P (b1), which amounts to adding a fixed component to the parking fee. If P (b1) =

−Nv′ (b1) ∂b1
∂N

then the marginal benefit of adding a car equals the marginal cost.

In this way the model can be extended to deal with externalities including e.g.

congestion cruising for a limited number of parking spaces and other congestion

externalities.

The current analysis has focused on the interaction of a time-varying parking

fee rate with congestion dynamics. We focus on the timing of parking and thus

complement the earlier contributions discussed in the introduction that, simply

put, consider where and for how long to park. Future research could seek to

integrate these perspectives in a unified analysis. It would also be natural to seek

to allow for heterogenous drivers, as has been done for the bottleneck model by

Lindsey (2004) and recently van den Berg and Verhoef (2011).11

11With the dynamic bottleneck model, METROPOLIS, implemented for large networks, such
complications could be envisaged. This will allow to test the robustness of our predictions for
large scale networks (see de Palma et al., 1997).
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A Proofs

Proof of Theorem 2. The first part of the theorem has already been established. It

remains to determine the welfare maximizing value of ∆. Compute the derivative

of W as

W ′ (∆) = ψ (b′∗ − b′0) v (b0) + ψ (b∗ − b0) v′ (b0) b′0 + ψ (v (b1) b′1 − v (b∗) b
′
∗) .

Use that v (b0) = v (b∗) , b
′
1 = b′0, and ∆ = v (b0)−v (b1) to reduce this expression

to

W ′ (∆) = [(b∗ − b0) v′ (b0)−∆]ψb′0,

and note that this is zero if and only if ∆ = (b∗ − b0) v′ (b0) . Next use that 1 =

v′ (b0) b′0 − v′ (b1) b′1 and b′1 = b′0 to find that b′0 = (v′ (b0)− v′ (b1))−1 > 0. Note

that

W ′ (0) = [(b∗ − b0) v′ (b0)]ψb′0 > 0

and that

W ′ (∆∗) = −∆∗ψb′0 < 0,

since b0 = b∗ at ∆ = ∆∗. Then there is at least one value of ∆ between 0 and

∆∗ with W ′ (∆) = 0. Evaluate next the second derivative of W at a point with

W ′ (∆) = 0 :

W ′′ (∆) = [(b′∗ − b′0) v′ (b0) + (b∗ − b0) v′′ (b0) b′0 − 1]ψb′0

+ [(b∗ − b0) v′ (b0)−∆]ψb′′0

= [(b′∗ − b′0) v′ (b0) + (b∗ − b0) v′′ (b0) b′0 − 1]ψb′0
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=

[
v′ (b0)− v′ (b∗)

v′ (b∗)
v′ (b0) b′0 + (b∗ − b0) v′′ (b0) b′0 − 1

]
ψb′0,

where the last equality follows upon noting that v′(b0)b′0 = v′(b∗)b
′
∗. This is

negative if and only if

v′ (b0)− v′ (b∗)
v′ (b∗)

v′ (b0) b′0 + (b∗ − b0) v′′ (b0) b′0 < 1.

But this inequality holds since v′ (b∗) < 0 and v is concave. Thus W ′ (∆) = 0

implies that W ′′ (∆) < 0 and hence that W is quasiconcave on the interval [0,∆∗]

such that W has a unique maximum there. It is straightforward to verify that this

maximum is global.

Proof of Theorem 3. Given the assumptions of Theorem 1, all departures

will take place within the interval [b0, b1] in Nash equilibrium. Now, v (b0) =

u
(
b0,

R(b0)
ψ

+ b0

)
> u

(
b1,

R(b1)
ψ

+ b0

)
= v (b1) , where the inequality follows

since the last driver pays a strictly smaller parking fee than the first but achieves

the same utility. Moreover, Uu ≡ u
(
t, R(t)

ψ
+ b0

)
, t ∈ Su is constant, which re-

quires that there is queue almost always during Su. Equilibrium similarly requires

that U c ≡ u
(
t, R(t)

ψ
+ b0

)
− P (t), t ∈ Sc is constant. Thus u

(
t, R(t)

ψ
+ b0

)
is

strictly decreasing on points of Sc where π (t) > 0. These conditions imply that

all uncharged drivers obtain utility v (b0) . Therefore they must all depart in the in-

terval [b0, b∗] , where b∗ is defined by the equation v (b0) = v (b∗) , which implies

that b∗ < b1 by quasiconcavity of v.

Proof of Proposition 1. Given ∆ = P (b0) − P (b1) , with 0 < ∆ < v (t∗) −

35

6363



v (a0) = N
ψ

βγ
β+γ

and P (b1) = 0, it is straightforward to find that

b0 =
∆− γN

ψ

β + γ
, b∗ = −β

γ

∆− γN
ψ

β + γ
, b1 =

∆ + βN
ψ

β + γ
.

Then the welfare given ∆ is

W (∆) = Nv (b0)− ψ (b1 − b∗) ∆/2

= Nβ
∆− γN

ψ

β + γ
− ψ

∆ + βN
ψ

β + γ
+
β

γ

∆− γN
ψ

β + γ

 ∆

2

=
1

β + γ

(
−βγN

2

ψ
+ β∆N − ψβ + γ

γ

∆2

2

)
.

This is maximal when

∆ =
βγ

β + γ

N

ψ
.

In this case

b0 =
−γ2

(β + γ)2

N

ψ
, b∗ =

βγ

(β + γ)2

N

ψ
, b1 =

β2 + 2βγ

(β + γ)2

N

ψ
.

The optimal time-varying toll leads to a welfare gain of N2

ψ
βγ

2(β+γ)
.

Proof of Theorem 4. Clearly, early birds depart before other drivers during

[e0, e1] where e1 < t∗. They pay the same price for parking and will therefore

queue, departing at the rate ρeb (t) > ψ,with Reb (e1) = Neb and the last arrival

time being e0 + Neb
ψ
. For other drivers, it is optimal that they are charged according

to a fee as in section 6 where there is first an interval [b0, b∗] of arrival times where

the parking fee rate is zero, there is queueing and v (b0) = v (b∗), next there is

an interval [b∗, b1] of arrival times with no queueing and a parking fee rate that is
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π (t) = −v′ (t) . We recall that b0 ≤ t∗ ≤ b∗ < b1. It is also clear that capacity

should be fully utilized during the commute. This requires that the last arrival

time of the early birds is the same as the first arrival time of the ordinary drivers

e0 + Neb
ψ

= b0. All drivers pass the bottleneck during [e0, b1] , so b1 = e0 + N/ψ.

Thus the timing of departures is determined by e0 and b0. The difference between

the parking fees Peb and P is then also determined since all drivers achieve the

same utility in equilibrium.

Welfare is

W = ψ · (b0 − e0) v (e0) + ψ · (b∗ − b0) v (b0) + ψ
∫ b1

b∗
v (t) dt,

which is composed ofψ·(b0 − e0) early birds achieving scheduling utility v (e0) , ψ·

(b∗ − b0) ordinary drivers achieving scheduling utility v (b0) and the remaining

ψ · (b1 − b0) achieving scheduling utility v (t) . The timing of departures is chosen

through e0 and b0 to optimize welfare with first order conditions (when b0 < t∗ <

b∗)

v (e0) = (b0 − e0) v′ (e0) + v (b1) ,

v (e0) = v (b0)− (b∗ − b0) v′ (b0) .

Now v′ (e0) , v′ (b0) > 0 such that v (b1) < v (e0) < v (b0) . Utilities are equal in

equilibrium so P (b1) < Peb < P (b0).

A corner solution arises when b0 = t∗ = b∗. In that case only e0 may vary and
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has first order condition

v (e0) = (t∗ − e0) v′ (e0) + v (b1) ,

implying that again v (b1) < v (e0) < v (b0) .

Proof of Lemma 1. The first order condition for the choice of departure time in

the morning, given the departure time in the evening, is

0 =
∂u (tm, te)

∂tm
= hm (tm)−

(
Γ′
(
te − cm −

Rm (tm)

ψm

)
− π

(
cm +

Rm (tm)

ψm

))
ρm (tm)

ψm
.

Observe that any tm can only solve the first order condition for one value of

t2. The function te (tm) thus defined then is single-valued. By the Berge maxi-

mum theorem (Aliprantis and Border, 2006), te has compact graph and hence te is

continuous. We take for granted that it is continuously differentiable. The second

order condition requires that

∂2u (tm, te)

∂t2m
≤ 0.

Differentiating the first order condition with respect to tm leads to

0 =
∂2u (tm, te)

∂t2m
− Γ′′

(
te − cm −

Rm (tm)

ψm

)
∂te
∂tm

and hence ∂te
∂tm
≥ 0. It is possible to have ∂te

∂tm
= 0 at points, but ∂te

∂tm
= 0 cannot

hold on any interval. If it did, then there would be a mass departure in the evening,

which is ruled out in equilibrium (if a mass departure should occur, then it is

always strictly utility increasing to postpone departure until immediately after the
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mass departure). This shows that ∂te
∂tm

> 0 almost everywhere.

The inequalities characterize equilibrium since they imply that the first driver

in either commute will not prefer to depart earlier and that the last driver in either

commute will not prefer to depart later. Equality of utility holds due to queueing.

With equality in (8) and (11), the first driver would not have incentive to postpone

departure if there were no queue.

Proof of Theorem 5. Let Rm (tm) = ψm (tm − cm) in the first commute and

Re (te) = ψe (te − ce) in the second. Then there is no queueing while capacity is

fully utilized. Utility for a driver with departure times tm and te is then

u (tm, te) =
∫ tm

0
hm (s) ds+

∫ 0

te
he (s) ds+ Γ (te − tm)−

∫ te

tm
π (s) ds.

Consider a driver departing at time tm ∈ [cm, cm +N/ψm] . Then the first or-

der condition for the choice of the second departure time has only one solution,

namely at te = f (tm) by the definition of π.Moreover, the second order condition

is satisfied,

∂2u (tm, t)

∂t2

∣∣∣∣∣
t=te

= −h′ (te) + Γ′′ (te − tm)

(
1− 1

f ′ (tm)

)
− π′ (te)

= −h′ (te) + Γ′′ (te − tm)−
(

Γ′′
(
te − f−1 (te)

)(
1− 1

f ′ (tm)

)
− h′ (te)

)

=
Γ′′ (te − tm)

f ′ (tm)
< 0.

With the optimal choice of departure time from work, te = f (tm) , utility is
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constant over the interval tm ∈ [cm, cm +N/ψm], since

∂u (tm, f (tm))

∂tm
= hm (tm)−Γ′ (te − tm)+π (tm)+(−he (te) + Γ′ (te − tm)− π (te)) f

′ (tm) = 0,

by the definition of π. Then the departure rates Rm, Re defined above do in fact

lead to equilibrium.

The equilibrium conditions in Lemma 1 are satisfied by construction of π.

Conditions (8) and (11) are satisfied with equality, indicating that the Pareto dom-

inant equilibrium is implemented.
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V. FILES D’ATTENTES ALEATOIRES ET USAGERS AVERSES AU 
RISQUE   

Mogens Fosgerau, Technical University of Denmark et Center for Transport Studies, Suède 

André de Palma, Ecole Normale Supérieure de Cachan et Centre d’économie de la Sorbonne. 
CES, France 

 

RESUME 

Nous étudions un service avec demande de pointe. On s’intéresse au cas où la demande 
est supérieure à la capacité, de sorte qu’il y a une file d’attente devant le service. Ce service 
sujet à congestion correspond à une route, à un parc d’attraction, ou une rame de métro 
surchargée. Le nombre d’usagers pouvant être servis par unité de temps est donné. Le temps 
de service dépend à la fois du temps d’arrivée dans la file d’attente, et aussi de la discipline de 
service. On considère deux cas limites. 

Le premier est celui de la file d’attente déterministe. Dans ce cas, le temps d’attente est 
égale au nombre de personnes dans la file à l’arrivée divisé par la capacité de la file.  

Dans l’autre cas limite, l’ordre dans la file est aléatoire, de sorte qu’à tout instant, 
chaque usager possède la même probabilité d’être servi. Le système doit satisfaire la 
contrainte globale selon laquelle le nombre d’usagers servis par unité de temps est égal à la 
capacité du service, donnée.  

Nous analysons enfin les cas intermédiaires entre ces deux cas limites et en proposant  
une modélisation.  

On suppose que les préférences des usagers sont décrits par une fonction d’utilité 
concave (ou linéaire par morceau) de sorte que les usagers sont averses au risque. Nous 
introduisons une condition dite d’absence de file d’attente résiduelle. Selon cette condition, il 
n’y a pas de file d’attente lorsque le dernier usager entré arrive au service. On montre que 
cette condition permet de garantir l’existence d’un équilibre, dans les deux cas limite et dans 
les cas intermédiaires. Cette condition permet aussi de calculer facilement les coûts 
d’équilibre et d’optimum sous les différents régimes, ainsi que la dynamique de la congestion. 

Mots clé : file d’attente, aversion au risque, arrivée endogènes, service avec demande de 
pointe 

Codes JEL: D00; D80 
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Abstract

We analyse Nash equilibrium in time of use of a congested facility. Users
are risk averse with general concave utility. Queues are subject to varying
degrees of random sorting, ranging from strict queue priority to a completely
random queue. We defin the key "no residual queue" property, which holds
when there is no queue at the time the last user arrives at the queue, and
prove that this property holds in equilibrium under all queueing regimes con-
sidered. The no residual queue property leads to simple results concerning
the equilibrium utility of users and the timing of the queue.
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1 Introduction

We generalise the Vickrey (1969) analysis of bottleneck congestion to allow for

random queue sorting as well as more general scheduling preferences. The pa-

per shows that the fundamental insights of Vickrey remain valid in these circum-

stances. In spite of users being risk averse, random queue sorting turns out to

play no role for the properties of equilibrium that are relevant for regulation of

congestion.

Enormous amounts of time are lost queueing. Just for private transportation,

the cost of congestion in Europe and the US is equivalent to more than 1 percent of

GDP (International Transport Forum, 2007; Texas Transportation Institute, 2007)

and unpriced congestion leads to excess urban sprawl (Arnott, 1979). Dynamic

models of traffic congestion are reviewed in de Palma and Fosgerau (2011). Con-

gestion arises not only on roads. Queues occur regularly also in supermarkets,

banks, public offices, restaurants (Becker, 1991), movie theatres, concert ticket

sales, at ski lifts (Barro and Romer, 1987) and toll road booths, in airports (Daniel,

1995), computer systems, communications systems, web services, call centers,

and many other systems. Queueing is also relevant for understanding competi-

tive markets, where queueing plays a role in allocating goods among consumers

and trade from firms is congestible (Sattinger, 2002). So it is clearly important to

understand queueing phenomena.

Economic analyses of congestion mostly assume strict first-in-first-out (FIFO)

queue discipline, whereby the order of arrival at the queue is preserved. Many

real queues, however, involve an element of random sorting. An extreme case is

a pure random queue.1 An example is a (virtual) queue to get through on a busy

telephone line (de Palma and Arnott, 1989), where every person present in the

queue at a given time has the same probability of being served as any other person

in the queue, regardless of how long each has been in the queue. Other queues also

involve random queue sorting. There are random opportunities for overtaking on

roads; in a supermarket, FIFO applies to individual checkout lines, but not to the

supermarket checkout system as a whole (Blanc, 2009); also queueing for public

transport is often not strictly FIFO (Yoshida, 2008). In general, we may think

that strict FIFO rarely occurs. It is thus of interest to determine the properties of

queues that are not strictly FIFO.2

The economic literature has previously paid attention to the properties of user

equilibrium in queues with strict queue priority using the seminal Vickrey (1969)

1It is also possible to conceive of queues with a queue manager. In this case, a last-in-first-out

queue may be considered an opposite of a FIFO queue (Hassin, 1985).
2Arnott, de Palma and Lindsey (1996) and (Arnott, de Palma and Lindsey, 1999) analyze a

situation in which capacity varies randomly from day to day, while the queue retains the FIFO

property.
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bottleneck model. This model offers many insights that are central to the under-

standing of congested demand peaks. Arnott, de Palma and Lindsey (1993) sum-

marise a number of these. In the Vickrey model, users arrive at a bottleneck where

they wait in a FIFO queue until they are served by the bottleneck. The bottleneck

serves users at a fixed rate. A continuum of users choose their time of arrival at

bottleneck into the queue to minimise a scheduling cost, which is linear in time

spent in the queue, time early and time late at the destination. The time-varying

arrival rate at the bottleneck is then determined endogenously in response to the

evolution of the queue. The model is closed by assuming Nash equilibrium.3

We extend the Vickrey model in two ways: first by allowing for random queue

sorting, and second by allowing users to have general concave utility depending

on duration in the queue as well as on time of exit from the queue. Random queue

sorting causes randomness in outcomes and the concavity of utility implies that

users are risk averse.

We then introduce the no residual queue (NRQ) property for a queue with a

general random sorting mechanism. A residual queue is a queue that remains at

the time of arrival at the bottleneck of the last user. The NRQ property is said to

hold when the queue has vanished at the time of the last arrival. By definition, the

equilibrium utilities of the first and the last user are equal. The NRQ property is

then sufficient to establish the equilibrium time interval of arrivals. A number of

useful results follow. In particular, we determine the equilibrium utility and the

marginal utility of adding users under Nash equilibrium. This is the information

that is needed in order to determine the optimal capacity provision as well the

optimal constant toll.

The basic insight is then that it is the NRQ property that underlies the elegance

of the Vickrey analysis of congestion. When the NRQ property holds, it does

not matter that the queue is subject to random sorting. Remarkably, the optimal

capacity, the optimal constant toll as well as the optimal time varying toll are

unaffected by random queue sorting.

So it is of interest to establish when the NRQ property holds. We identify a

condition on scheduling preferences that is sufficient for the NRQ property under

any degree of random queue sorting. It turns out to be sufficient that users must

be always willing to arrive one minute later in exchange for spending one minute

less in the queue. This condition cannot be relaxed in general.

We also show that the optimal time varying toll is also not affected by random

queue sorting, since there is no queue under the optimal time varying toll. This

result holds regardless of whether the NRQ property holds in no toll equilibrium.

The paper is organised as follows. Section 2 presents the general framework,

3The operations research literature generally considers the arrival rate as exogenous, perhaps

allowing the user to balk when he meets a long queue (Naor, 1969; Knudsen, 1972).

3

7373



introduces the NRQ property, and derives the results that follow from this prop-

erty.

The remainder of the paper is devoted to establishing the NRQ property under

various degrees of random queue sorting. First, Section 3 reviews and generalises

the standard case of strict queue priority and establishes that the NRQ property

holds here. Next, Section 4 considers the oppposite case of no queue priority

where users to be served are chosen completely at random from the queue. We

establish also the NRQ property for this case given the above condition on prefer-

ences.

Section 5 considers the intermediate case, which we refer to as loose queue

priority. Under this regime, the probability of being served at time t, conditional

on being in the queue at time t, increases with the time spent in the queue. We

show that the above condition on marginal utilities is again sufficient to guarantee

the NRQ property to hold in general when queue priority is loose. Some conclud-

ing remarks are provided in Section 6.

2 Model specification

Consider N users treated as a continuum. They must all pass through a bottleneck

which has a capacity of ψ users per time unit. Users arrive at the bottleneck

at the back of the queue at the locally bounded time dependent rate ρ (a) ≥ 0
during the interval [t0, t1], where t0 and t1 are the minimum and the maximum of

the support of ρ. The cumulative arrival rate up to time a is denoted by R (a) =∫ a
t0
ρ (s) ds, and R (·) is continuous since ρ (·) is locally bounded. Furthermore,

R (·) is differentiable at all points of continuity of ρ (·) . Users enter a vertical

queue of length Q (a) at time a, which represents the number of users who have

arrived at the entrance of the bottleneck but not yet exited. The queue length

evolves according to4

Q (a) = R (a)−
∫ a

t0

[
ψ1{Q(s)>0} +min (ψ, ρ (s)) 1{Q(s)=0}

]
ds, (1)

so Q (·) is continuous and also differentiable at points of continuity of ρ (·) . De-

note the minimum and the maximum of the support of the queue length Q (·) as

τ 0 and τ 1.
The last user exits the queue at time τ 1. This implies that τ 1 ≥ t1. If Q (t1) =

0, then τ 1 = t1. If Q (t1) > 0, we say that there is a residual queue at time t1.
In this case, τ 1 is given by Q (t1) = ψ (τ 1 − t1) , since the queue length at time

t ∈ [t1, τ 1[ is strictly positive if Q (t1) > 0.

41{·} is the indicator function for the event in curly brackets.
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We shall consider various queueing regimes. At one extreme we have the

strict queue priority case, considered by Vickrey (1969), where the queue obeys

the first-in-first-out principle (FIFO). At the other extreme we have the no queue

priority case, where the user to exit at each instant is chosen completely at random

from the queue. Therefore the probability of exit from the queue at some instant

is the same for all users present in the queue and does not depend on how much

time each has spent in the queue. In between these two cases, we have the loose

queue priority case. In this case, users who are in the queue in a given instant have

a higher probability of exit if they have spent more time in the queue.

We formalise these cases below through the conditional density of exit times

f (t|a) , which describes the probability of exit at time t conditional on arrival at

the bottleneck at time a ≤ t. This conditional density depends on the arrival rate

ρ (·), but it is exogenous from the perspective of a single atomistic user. In all

cases, except the strict queue priority case that is treated separately, we assume

that f (t|a) is differentiable as a function of a.

A user arrives at the bottleneck at time a and exits at time t with a ≤ t, such

that his duration in the queue is d = t− a. The arrival time is chosen by the user

while the exit time is determined by the queue. He has a preferred exit time t∗.
Utility is associated with the duration in the queue and the deviation t − t∗ of

the exit time from the preferred exit time. Assume homogenous users and write

utility as u (d, t− t∗). Utility is concave, has a unique maximum at d = 0 for

any t − t∗ and a unique maximum at t = t∗ for any duration in the queue. Given

any exit time, users strictly prefer zero duration in the queue to anything else, and

given any duration in the queue, users strictly prefer exiting at the preferred time

to anything else. With these assumptions, utility is strictly decreasing in d, strictly

increasing in t for t < t∗ and strictly decreasing in t for t > t∗. We normalise

t∗ = 0 at no loss of generality.

Users choose their arrival time a to maximise their expected utility given by

E (u|a) =
∫ ∞
a

u (t− a, t) f (t|a) dt. (2)

We specify the following assumptions concerning the utility function. De-

note the partial derivatives of u with respect to duration and exit time as u1 and

u2, respectively. We require first and second derivatives to exist, except u2 (d, 0)
which is not required to exist. Clearly, users who exit late are always willing to

exit one minute earlier in exchange for spending one minute less in the queue. We

require that also users who exit early are always willing willing to exit one minute

earlier in exchange for spending one minute less in the queue. This first condition

is assumed throughout the paper.
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Condition 1 u1 (d, t) + u2 (d, t) < 0 for all t < 0.

We shall also have use for a second condition stating that users who exit late

are always willing to exit one minute later in exchange for spending one minute

less in the queue. For easy reference we shall call this the acceptable lateness

condition. Clearly, users who exit early always satisfy the acceptable lateness

condition. It is assumed where indicated.

Condition 2 (Acceptable lateness) u1 (d, t) < u2 (d, t) for all t > 0.

We shall refer to the special case of linear utility, which is the case investigated

by Vickrey (1969) and Arnott et al. (1993). This will be important for results and

also helps in facilitating interpretation of results. The linear utility formulation is5

u (d, t) = −αd− βt− − γt+,

where the parameters α, β and γ are strictly positive. For the linear case, condition

1 states that β < α, while the acceptable lateness condition 2 states that γ < α.
Yoshida (2008) summarises empirical evidence and concludes that both cases γ <
α and γ > α are empirically relevant.

We consider Nash equilibrium in pure strategies as the benchmark for rational

behavior.6 The Nash equilibrium is defined by the requirement that, conditional

on the actions of other users, no user has incentive to change his own action. With

identical users, this requirement turns into the condition that the expected utility

is constant and maximal over the times at which users arrive, i.e. over the support

of ρ.

Below we shall briefly touch the issue of optimal tolling. For this we need

to specify how a toll payment enters utility and a social welfare function with

respect to which optimality is defined. We take any toll payment to be simply

subtracted from utility, which then must be in monetary units. When expected

utility is constant over users, we define a social welfare function as N times the

equilibrium expected utility plus aggregate toll revenues.

In the strict queue priority case, the exit time is given deterministically as a

function of the arrival time. We then require that utility is constant over all arrival

times a with ρ (a) > 0.
In all other cases considered, exit time is random. The Nash condition implies

that the expected utility is constant, i.e.
∂E(u|a)
∂a

= 0, for all a such that ρ (a) > 0.

5x+ = max (x, 0), and x = x+ − x−.
6The equilibrium concept is discussed by Arnott et al. (1993).
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This leads to the equation

−u (0, a) f (a|a) +
∫ ∞
a

[
u (t− a, t) ∂f (t|a)

∂a
− u1 (t− a, t) f (t|a)

]
dt = 0.

Recall that t0 and t1 are the times of the first and the last arrival. The following

Lemma shows that in equilibrium the queue begins when the first user arrives at

the bottleneck and that the queue ends at the earliest when the last user arrives.

Lemma 1 The support of Q is a finite interval in Nash equilibrium, with −∞ <
t0 = τ 0 < 0 and 0 < t1 ≤ τ 1 <∞.

All proofs are given in the appendix. We now introduce the no residual queue

property.

Definition 1 The no residual queue (NRQ) property holds if τ 1 ≤ t1.

The NRQ property ensures that [t0, t1] = [τ 0, τ 1] in Nash equilibrium by

Lemma 1. This means that the first and last users experience no queue, and hence

that u (0, t0) = u (0, t1). Moreover, all users are able to pass the bottleneck during

[t0, t1] , which implies that t1 = t0 + N/ψ. These two observations pin down the

equilibrium utility as shown in the following Proposition.

Proposition 1 Consider Nash equilibrium where the NRQ property holds. Then

the interval of arrival, [t0, t1] with t0 < 0 < t1, is uniquely determined by t1 =

t0+
N
ψ

and u (0, t0) = u
(
0, t0 +

N
ψ

)
. The expected utility of any user is u (0, t0) .

The marginal change in expected utility from additional users is

∂E (u|a)
∂N

=
1

ψ

u2 (0, t0)u2 (0, t1)

u2 (0, t1)− u2 (0, t0)
< 0, (3)

which decreases in the number of users.

The preceding Proposition exhibits the central properties of the bottleneck

model. In particular, the expected utility of any user is known as a function of

the number of users, which makes it easy to derive the optimal capacity. If the

number of users is allowed to be elastic, then Proposition 1 can be used to deter-

mine the optimal constant toll. Below we establish that the NRQ property holds

under strict, loose and no queue priority and hence that Proposition 1 applies in

all these regimes.

The optimal time varying toll eliminates queueing. Hence it is not affected by

random queue sorting. This is formalised in the following Proposition, which is

stated without proof.
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Proposition 2 The optimal time varying toll is

[u (0, a)− u (0, t0)]+ ,

where t0 is the first arrival time in Nash equilibrium under strict queue priority.

3 Strict queue priority

This is the case considered by Vickrey (1969) and Arnott et al. (1993) in the

context of transportation and telecommunication, except for our more general

formulation of user preferences. Users exit strictly in the order in which they

arrive, hence exit time is a deterministic function of arrival time. A user ar-

riving at time a is served at time a + q (a), where q (a) = Q (a) /ψ. We have

q (a) = R(a)
ψ
− (a− t0), since there is always queue during [t0, t1]. Therefore

q′ (a) =
ρ (a)

ψ
− 1. (4)

The queue satisfies the NRQ property, since if the last user arrives at time t1
when Q (t1) > 0, then his exit time will be τ 1 > t1. This implies that he could

postpone arrival until τ 1 to obtain zero duration in the queue while leaving the

exit time unchanged, in contradiction of Nash equilibrium. We highlight this in a

Proposition.

Proposition 3 The NRQ property holds in Nash equilibrium under strict queue

priority.

Now t1 = τ 1 so that Proposition 1 applies and t1 = t0 + N/ψ. We shall

briefly review the analysis of the bottleneck model for the case of general concave

scheduling preferences.

By concavity of u, t0 is the unique solution to the equation

u (0, t0) = u (0, t0 +N/ψ) .

The utility function is given by u (q (a) , a+ q (a)) .We omit below the arguments

of u (·) to economise on notation. The first-order condition for Nash equilibrium

is ∂u
∂a
= u1 · q′ (a) + u2 · [1 + q′ (a)] = 0, a ∈ [t0, t1]. Using (4) leads to the

equilibrium arrival rate

ρ (a) = ψ
u1

u1 + u2
> 0, (5)

which is strictly positive on [t0, t1] by Condition 1. (Condition 2 is not necessary

here.)
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ψ(tt0)

q(a)
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Figure 1: The evolution of the queue under strict queue priority with linear utility

By (5), ρ (a) > ψ exactly when u2 > 0,which occurs exactly when a+q (a) <
0. Thus the queue builds up until time ã < 0 defined by ã + q (ã) = 0, at which

time the queue begins to diminish.

The arrival rate is decreasing. To see this for a 6= ã, differentiate the equilib-

rium condition twice to find

(q′ (a) , 1 + q′ (a))

(
u11 u12
u12 u22

)
(q′ (a) , 1 + q′ (a))

T
+ (u1 + u2) q

′′ (a) = 0.

The first term here is negative since u (·) is concave, and hence the second term is

positive. Then q′′ (a) ≥ 0 by Condition 1. Find from (4) that ρ′ (a) /ψ = q′′ (a) ,
such that ρ′ (a) ≥ 0. The utility function is not required to be differentiable at the

point (q (ã) , ã+ q (ã)) .
For any small ε > 0, we have u2 (q (ã+ ε) , ã+ ε+ q (ã+ ε)) < 0 and 0 <

u2 (q (ã− ε) , ã− ε+ q (ã− ε)) ,while u1 (q (a) , a+ q (a)) < 0.Hence ρ (·) can

only jump down at ã. Such a jump occurs in the linear case, where the arrival rate

is ρ(a) = ψ α
α−β for a < ã, and ρ(a) = ψ α

α+γ
for a > ã, which is piecewise

constant with a downward jump at ã = −β
α

γ
β+γ

N
ψ
.

Figure 1 shows the evolution of the queue under strict queue priority with

linear utility. The curve R (a) is the cumulative arrival rate, the kink occurs at

the time where users exit at time t∗ = 0. The curve ψ (t− t0) represents the

cumulative number of exits from the queue. The curve q (a) shows the duration in

the queue for users entering the queue at time a. It is maximal for users who exit

at time t∗. The curve a+ q (a) indicates the exit time for users entering the queue

at time a.
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4 No queue priority

With no queue priority, users to exit at any time are chosen at random at the rate

ψ such that all users present in the queue have the same chance to exit. We first

formalise this notion and show that if there is a residual queue at the time t1 of

the last arrival at the bottleneck, then the distribution of exit times conditional of

being in the queue at time t1 is uniform. Using this result, we then show that

the acceptable lateness condition 2 is sufficient to guarantee the NRQ property in

Nash equilibrium under no queue priority and that the equilibrium arrival rate is

indeed positive. The acceptable lateness condition cannot be relaxed in general.

We formulate the no queue priority assumption by means of the hazard rate

using concepts and results from duration analysis (Lancaster, 1990). The hazard

rate does not depend on a as all users present in the queue at time t have the same

probability to exit. Define the hazard rate of a user who is present in the queue at

time t as

λ (t) =
f (t|a)

1− F (t|a) =
ψ

Q (t)
, (6)

where f (t|a) and F (t|a) are respectively the density and cumulative distribution

of exit time t conditional on being in the queue at time a. The survivor function

1− F (t|a) can be expressed in terms of the integrated hazard by

1− F (t|a) = e−
∫ t
a λ(s)ds. (7)

The following technical Lemma concerns the conditional density of exit times

when there is a residual queue after the last arrival. It states that when a pool of

users exit with equal probability at a constant rate during some interval, then the

exit time for each of them is uniformly distributed over this interval.

Lemma 2 Consider the no queue priority case. Let t1 be the time of the last

arrival and assume that Q (t1) > 0. Then the exit time conditional on being in the

queue at time a (t1 ≤ a ≤ τ 1) is uniformly distributed over the interval [a, τ 1]
with f (t|a) = λ (a) , t ∈ [a, τ 1]. Furthermore, λ′ (a) = λ2 (a).

We shall now show that concave utility as defined above together with the ac-

ceptable lateness condition 2 is sufficient to establish the no residual queue prop-

erty for the no queue priority case. The acceptable lateness condition states that

the marginal disutility of lateness is smaller than the marginal disutility of dura-

tion in the queue. If the queue diminishes quickly enough as arrival time increases,

users will then postpone arrival until the queue is no longer decreasing so quickly.

The second half of the Proposition establishes that condition 2 is also necessary

for the NRQ property under linear utility. Hence condition 2 cannot be relaxed in

general.
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Figure 2: The evolution of the queue under no queue priority with linear utility

Proposition 4 The acceptable lateness condition 2 is sufficient for the no residual

queue property to hold. Under linear utility, condition 2 is also necessary.

Proposition 5 establishes that the equilibrium arrival rate is always strictly

positive under the acceptable lateness condition 2 and that the condition cannot be

relaxed in general.

Proposition 5 The acceptable lateness condition 2 is sufficient for the equilib-

rium arrival rate to be strictly positive over the interval [t0, t1] defined by u (0, t0) =
u (0, t1). Under linear utility, condition 2 is also necessary.

Figure 2 illustrates the evolution of the queue under no queue priority and

linear utility. For comparison, the figure also shows the evolution of the queue

under strict queue priority. The kinked curves are the cumulative arrival rates.

Note that in the NQP case, the kink in the cumulative arrival rate occurs at time

t∗ = 0. The straight curve represents the cumulative number of exits from the

queue.

5 Loose queue priority

This section concerns the case of loose queue priority, which we shall define as

an intermediate case between the cases examined so far of strict and no queue

priority. We shall show that the acceptable lateness condition 2 is sufficient to

establish the no residual queue property for the case of loose queue priority; hence

Condition 2 implies that Proposition 1 holds.

Under strict queue priority, users exit strictly in the order in which they arrive.

Under no queue priority, users present in the queue at any instant all have the same
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probability of exit. The intermediate case of loose queue priority is defined by

requiring that at any instant, users whose present duration in the queue is longer

have a higher chance to exit than users whose present duration in the queue is

shorter. So arrival time matters, even if queue priority is not strict. There are very

many possibilities for explicitly defining processes that have this property. The

example below provides one simple way to model loose priority.

Example 1 Introduce a variable N (a, t) denoting the number of users in the

queue at time t who arrived at the queue after time a, a ≤ t. We have N (a, t) ≤
Q (t) . Furthermore, N (t, t) = 0 and N (t0, t) = Q (t) . At time t, there are

Q (t) − N (a, t) users in the queue who arrived earlier than a. Users exit the

queue at the rate ψ, but under loose queue priority the hazard is not the same for

everybody, it depends on the time of arrival a. We want the hazard rate, denoted

λ (t|a) , to increase with the duration of the stay in the queue. One possible way

of achieving this is by specifying the hazard rate to be

λ (t|a) = H

(
N (a, t)

Q (t)

)
ψ

Q (t)
,

where H (·) is an increasing density on the unit interval with H (0) < 1. This

hazard rate increases with the duration in the queue. The definition encom-

passes strict and no queue priority as limiting cases as H (·) approaches ei-

ther a point mass at 1 or a uniform density. The hazard for the last user has

λ (t|t1) = H
(
N(t1,t)
Q(t)

)
ψ
Q(t)

= H (0) ψ
Q(t)

< ψ
Q(t)

(t1 ≤ t) .

Recall that t1 is the time of the last arrival at the queue, while τ 1 = t1 +
Q (t1) /ψ is the time of the last exit from the queue. When there is a residual

queue Q (t1) > 0 then τ 1 > t1.
In the case of no queue priority we noted in Proposition 4 that the acceptable

lateness condition 2 implies that Q (t1) > 0 ⇒ E (u|τ 1) > E (u|t1) , contradict-

ing that we can have Q (t1) > 0 in Nash equilibrium. In this case the distribution

of exit times conditional on entry at time t1 is the uniform distribution over the

interval [t1, τ 1]. We denoted this by F (t|t1) .
In the case of strict queue priority we noted that Q (t1) > 0 ⇒ u (τ 1) >

u (t1) , which again contradicts that we can have Q (t1) > 0 in Nash equilibrium.

This happens because the last user entering at time t1 will exit at time τ 1 with

probability 1.

In order to establish the no residual queue property for the case of loose prior-

ity, it is sufficient to give a condition on the distribution of exit times conditional

on entry at time t1. Denote this distribution by F̃ (·|t1) . We require that loose

queue priority satisfies the following condition.
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Condition 3 (Loose queue priority) Under loose queue priority, the distribu-

tion of exit times conditional on arriving last, F̃ (·|t1), first-order stochastically

dominates F (·|t1) , where F (·|t1) is the uniform distribution over [t1, τ 1] with

τ 1 = t1 +Q (t1) /ψ.

The loose queue priority condition immediately implies that if there is a resid-

ual queue, then the last user to arrive is worse off under loose queue priority than

under no queue priority (the utility function is decreasing in exit time, for any

given arrival time). Hence Proposition 4 leads naturally to the following Proposi-

tion.

Proposition 6 Under loose queue priority, the acceptable lateness condition 2

implies the no residual queue property in Nash equilibrium.

Hence Condition 2 is sufficient to ensure that Proposition 1 applies, also in the

case of loose queue priority.

6 Concluding remarks

This paper has considered a generalised version of the Vickrey bottleneck model

of congestion users having general concave utility defined over the duration in the

queue as well as the time of exit from the queue. The queue may be subject to

varying degrees of random sorting, ranging from strict FIFO queue priority to no

queue priority. The no residual queue (NRQ) property holds when the queue has

vanished at the time of the last arrival. Proposition 1 shows that the NRQ property

is sufficient to derive a number of results that are useful for designing policies to

regulate congestion. In particular, the interval of arrival as well as the expected

utility of users are independent of the queueing regime, provided the NRQ prop-

erty holds. The remainder of the paper then establishes that the acceptable lateness

condition 2, restricting the relation between the marginal utilities of duration and

exit time, is sufficient for the NRQ property to hold in Nash equilibrium under all

queueing regimes considered and that this condition cannot be relaxed in general.

For simplicity, we have only considered the case where total usage is constant.

The extension to endogenous total demand is however straightforward.

The paper leaves open the characterisation of Nash equilibrium when the NRQ

property does not hold. In that case, the convenient results of Proposition 1 are not

available. The paper also leaves open the question of what happens under random

queue sorting when the acceptable lateness condition is not satisfied. It is possible

that there are combinations of queueing regimes and strictly concave utility for

which the NRQ property does hold.

13

8383



We must acknowledge some further limitations of our analysis. A main sim-

plification is that we assume homogenous users, whereas heterogeneity is likely

in actual queueing situations. Lindsey (2004) presents an analysis of user het-

erogeneity for the bottleneck model with strict FIFO queue and scheduling utility

which is separable in duration in the queue and time of exit from the queue. It

may be possible to extend Lindsey’s analysis to allow for random queue sorting.

We leave this for the future.
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A Proofs

Proof of lemma 1.

Proof. All N users can arrive and be served without queueing during an interval

of length N/ψ, so −∞ < −N/ψ ≤ τ 0, τ 1 ≤ N/ψ < ∞. There must be arrivals

before the queue can start, so t0 ≤ τ 0. If t0 < τ 0, some users can benefit from

postponing arrival so t0 = τ 0 in equilibrium. Similarly, t1 ≤ τ 1, since otherwise

some users could benefit from arriving earlier. In equilibrium, there is always

queue during ]τ 0, τ 1[ since otherwise users could benefit from moving into the

gap in the queue. The arrival rate is locally bounded so not all users can arrive at

time 0. The first arrival time occurs strictly before the preferred exit time 0, since

otherwise it would be possible to arrive at time 0 and be served immediately.

Similarly, the last arrival time occurs strictly after time 0.

Proof of Proposition 1.

Proof. The NRQ property implies that t1 = τ 1, which means that Q (t1) = 0.
Hence the durations in the queue are zero at times t0 and t1 so that u (0, t0) =
u (0, t1) . By Lemma 1, the queue lasts from t0 to t1 such that N = ψ (t1 − t0) .
Consequently, t0 and t1 are unique due to concavity of u (·) and t0 < 0 < t1. By

the equilibrium condition, E (u|a) = u (0, t0) for all a ∈ [t0, t1]. Differentiating

N = ψ (t1 − t0) leads to 1 = ψ
(
∂t1
∂N
− ∂t0

∂N

)
. Differentiating u (0, t0) = u (0, t1)

leads to u2 (0, t0)
∂t0
∂N
= u2 (0, t1)

∂t1
∂N

, so that

∂t0
∂N

=
1

ψ

u2 (0, t1)

u2 (0, t0)− u2 (0, t1)
< 0.

Then
∂u (0, t0)

∂N
=
1

ψ

u2 (0, t0)u2 (0, t1)

u2 (0, t0)− u2 (0, t1)
< 0.

Straightforward computation establishes that when u (·) is concave, then the mar-

ginal utility decreases

∂2u (0, t0)

∂N2
=
1

ψ2
u2 (0, t0)

3 u22 (0, t1)− u2 (0, t1)3 u22 (0, t0)
(u2 (0, t0)− u2 (0, t1))3

≤ 0,

with strict inequality when u (·) is strictly concave.

The following Lemma collects some relationships between the hazard rate

and the corresponding conditional density and cumulative distribution function.

We will use the results in the Lemma many times in the proofs below and will

therefore omit references to the Lemma.
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Lemma 3 Let the hazard rate λ and the corresponding f (t|a) and F (t|a) be as

defined above. Then the following relations hold.

f (a|a) = λ (a) (8)

∂F (t|a)
∂a

= −λ (a)
λ (t)

f (t|a) (9)

∂f (t|a)
∂a

= λ (a) f (t|a) (10)

Proof. The first assertion follows from (6), since F (a|a) = 0. Differentiate (7) to

find that

∂F (t|a)
∂a

= −λ (a) e−
∫ t
a λ(s)ds = −λ (a) (1− F (t|a)) .

Then the second assertion follows by substitution from (6), while the third asser-

tion follows by differentiation with respect to t.

Proof of Lemma 2.

Proof. Evaluate first 1− F (t|a). Let t1 ≤ a ≤ t ≤ τ 1. Then by (7)

1− F (t|a) = exp
(
−
∫ t

a

ψ

Q (t1)− ψ (s− t1)
ds

)
,

where we use that Q (s) = Q (t1) − ψ (s− t1) . Make the substitution x =
Q (t1) /ψ − (s− t1) to find that

1− F (t|a) = exp

(∫ Q(t1)/ψ−(t−t1)

Q(t1)/ψ−(a−t1)

1

x
dx

)

=
Q (t1) /ψ − (t− t1)
Q (t1) /ψ − (a− t1)

=
λ (a)

λ (t)
.

Use (6) to see that f (t|a) = λ (a) . As the density of exit times conditional on a
is constant, the exit time is uniformly distributed. To verify the last statement of

the Proposition, simply differentiate

∂λ (a)

∂a
= −ψQ

′ (a)

Q2 (a)
=

ψ2

Q2 (a)
= λ2 (a) .

Proof of Proposition 4.
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Proof. Assume a Nash equilibrium with a residual queue at time t1 and consider

a > t1. The expected utility at time a, given by (2), is

E (u|a) = λ (a)

∫ τ1

a

u (t− a, t) dt

by Lemma 2. Using the last statement of Lemma 2, the derivative with respect to

the arrival time a is seen to be

1

λ (a)

∂E (u|a)
∂a

= E (u|a)− u (0, a)−
∫ τ1

a

u1 (t− a, t) dt. (11)

Considering the following identity

u (τ 1 − a, τ 1)− u (0, a) =
∫ τ1

a

[u1 (t− a, t) + u2 (t− a, t)] dt,

we may write

1

λ (a)

∂E (u|a)
∂a

= E (u|a)− u (τ 1 − a, τ 1) +
∫ τ1

a

u2 (t− a, t) dt.

Add the two expressions for
∂E(u|a)
∂a

to obtain

1

λ (a)

∂E (u|a)
∂a

=

[
E (u|a)− 1

2
(u (0, a) + u (τ 1 − a, τ 1))

]
+

1

2

∫ τ1

a

[u2 (t− a, t)− u1 (t− a, t)] dt

The first term on the RHS is positive by Jensen’s inequality since u (t− a, t) is

concave as a function of t and the second term is strictly positive by Condition 2.
Thus, E (u|a) is strictly increasing on ]t1, τ 1[ so that

E (u|t1) < E (u|τ 1) = u (0, τ 1) , (12)

which contradicts Nash equilibrium.

To verify the second assertion of the Proposition, note that in the linear case,

1

λ (a)

∂E (u|a)
∂a

=
1

2

∫ τ1

a

[u2 (t− a, t)− u1 (t− a, t)] dt

=
1

2
(τ 1 − a) (α− γ) .
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Then
∂E(u|a)
∂a

> 0 is equivalent to Condition 2 and so Condition 2 is also necessary.

Proof of Proposition 5.

Proof. The expression for the expected utility conditional on arrival at time a is

(2). Using (10), we express the equilibrium condition for the no queue priority

case as follows.

∂E (u|a)
∂a

= λ (a)E (u|a)− u (0, a)λ (a)− E (u1|a) = 0,

which can be solved using λ (a) = ψ/Q (a) to yield

Q (a)

ψ
=
E (u|a)− u (0, a)

E (u1|a)
.

Differentiate again and use that (1) gives Q′ (a) = ρ (a)− ψ to find

ρ (a)

ψ
= 1− u2 (0, a)

E (u1|a)
−

∂E(u1|a)
∂a

λ (a)E (u1|a)
. (13)

Multiply all terms in (13) by −λ (a)E (u1|a) > 0 to find that ρ (a) > 0 iff

−λ (a)E (u1|a) + λ (a)u2 (0, a) +
∂E (u1|a)

∂a
> 0. (14)

Carry out the differentiation using Lemma 3 to find that

∂E (u1|a)
∂a

= −λ (a)u1 (0, a)− E (u11|a) + λ (a)E (u1|a) .

Insert this into the inequality (14) to find that it is equivalent to

λ (a) [u2 (0, a)− u1 (0, a)]− E (u11|a) > 0. (15)

The second term is positive since u is concave. Therefore Condition 2 implies that

ρ (a) > 0.
When utility is linear, (13) shows that the equilibrium arrival rate is

ρ(a) =

{
ψα+β

α
, a < 0

ψα−γ
α
, a > 0.

Then ρ (a) > 0 implies Condition 2.

Proof of Proposition 6.
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Proof. Assume that Q (t1) > 0. Then EF̃ (u|t1) ≤ EF (u|t1), due to first-order

stochastic dominance. But EF (u|t1) < u (0, τ 1) by (12) in the proof of Propo-

sition 4. Then EF̃ (u|t1) < u (0, τ 1) and the last user would prefer to arrive at

τ 1 rather than at t1. This contradicts Nash equilibrium. Hence we must have

Q (t1) = 0 in Nash equilibrium.
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