Les emplois favorables à la biodiversité en lle-de-France

Jean DE BEIR Université d'Evry Val d'Essonne et TEPP-CNRS

Céline EMOND Centre d'Etudes de l'Emploi et TEPP-CNRS

Yannick L'HORTY, Université Paris Est Marne-la Vallée, CEE et TEPP CNRS

Laetitia TUFFERY
Centre d'Etudes de l'Emploi et TEPP-CNRS

Rapport final

Pour le compte de NATUREPARIF

Contexte

Natureparif, agence régionale pour la nature et la biodiversité en lle-de-France, a sollicité le Centre d'Etudes de l'Emploi pour mener à bien une étude approfondie sur les emplois ayant un impact positif sur la biodiversité.

L'objet de l'étude est d'identifier et de dénombrer les emplois favorables à la biodiversité en lle-de-France et de décrire les principales caractéristiques et l'évolution de ces emplois. Sa finalité est d'éclairer les décisions publiques permettant d'intégrer la biodiversité dans les politiques régionales de l'emploi.

Le présent rapport est le document final prévu par l'article IV de la convention. Il sera présenté et soumis à validation du comité de pilotage qui suit l'étude de la même manière que l'ont été les deux précédents rapports intermédiaires. Son objet est de présenter les résultats et les conclusions de l'étude.

Remerciements

Les auteurs du présent rapport, sans se dégager de leur responsabilité, remercient pour leurs commentaires et remarques Natureparif et tout particulièrement Stéphanie Lux, Laura Maxim et Marc Barra ainsi que tous les membres du comité de pilotage de l'étude :

Guillaume Arama, Gérard Arnal, Beatrice Bellini, Sylvie Benard, Jacques Benharrous, Valérie Berger, Sandra Bonniau, Pierre Clavel, Dénis Couvet, Yann Fradin, Nathalie Frascaria-Lacoste, Gaël Gonzalez, Catherine Gwet, Joël Houdet, Vincent Hulin, Bruno Lassalle, André Lechiguero, Jane Lecomte, Nadia Loury, François Sarrazin, Jean-Philippe Siblet, Lucile Skrzypczak, Michel Veillard, Jacques Weber

Résumé

Dès les années 1970, des travaux empiriques ont tenté d'évaluer l'effet des politiques de protection de l'environnement sur l'emploi. Plus récemment, des études analysent l'impact en termes d'emploi des politiques de lutte contre l'effet de serre dans des secteurs spécifiques ou dans l'ensemble de l'économie. La mesure de l'emploi favorable à la biodiversité relève quant à elle d'une démarche analytique novatrice. C'est dans ce champ que s'inscrit notre étude dont l'objet est de dénombrer les emplois favorables à la biodiversité (« les bio-emplois ») en lle-de-France et d'étudier les différents moyens offerts aux politiques publiques pour augmenter ces emplois et soutenir ainsi la biodiversité.

Pour discuter les effets des politiques publiques, il est en effet intéressant de distinguer deux types d'objectifs : l'impact sur la biodiversité, que nous pouvons approcher avec le volume des bio-emplois, et l'impact sur l'emploi, que nous mesurons directement. La question est de savoir quelle politique est la mieux adaptée pour augmenter le nombre de bio-emplois (directs et induits) tout en prenant en compte les effets sur l'emploi en général. Notre objectif est de contribuer à la réflexion sur la mise en place de politiques publiques à double dividende.

Nous considérons les emplois salariés ayant un impact favorable sur la biodiversité, que nous nommons « bio-emplois » comme étant ceux dont l'activité ou une part de l'activité contribue à la connaissance, la gestion, la protection, la valorisation et la restauration de la biodiversité de façon intentionnelle ou non, et ceux contribuant à la prise en compte des enjeux de biodiversité dans les autres activités économiques. Ils comprennent aussi les activités de communication et de financement de projets favorables à la biodiversité. La biodiversité est ici définie comme l'ensemble du tissu vivant, de ses fonctions écologiques et de ses services écosystémiques

Partant d'une analyse monographique des secteurs d'activités franciliens ayant des effets favorables sur la biodiversité, nous avons réalisé un inventaire des bio-emplois en lle-de-France et des emplois induits à l'échelle nationale.

Selon nos estimations, les bio-emplois ne représentent aujourd'hui que 1 emploi sur 1000 en Ile-de-France, soient 5090 bio-emplois en effectifs occupés (EO) et 6400 en équivalent temps plein (ETP). Ils se répartissent, à plus de 70%, entre les activités associatives, les activités de recherche et développement et l'administration publique. A cela, s'ajoutent 2355 emplois nationaux en EO et 2900 ETP, induits par les bio-emplois franciliens, soit un total de presque 7450 bio-emplois et emplois induits en EO et 9300 pour une comptabilisation en ETP. Ainsi, pour deux bio-emplois, en moyenne, un emploi induit est créé.

Pour effectuer ce dénombrement, nous avons construit un outil de simulation, baptisé SPIDER, qui nous permet également de quantifier différents scenarii d'évolution des bio-emplois ainsi que les effets de politiques régionales visant à soutenir la création de bio-emplois. Parmi l'ensemble des politiques régionales, on peut distinguer deux grands types d'action. On peut tout d'abord agir sur le volume de l'activité économique, par exemple en encourageant la production de tel ou tel secteur à l'aide de subventions ou de commandes publiques. Ce type de politiques correspond peu ou prou à des politiques de demande. Ensuite, les politiques régionales peuvent, à niveau d'activité donné, changer les pratiques productives, par exemple en privilégiant un cadre réglementaire plus favorable à la biodiversité. Il s'agit là de politiques d'offre. Entre ces deux grands ensembles de stratégies, nos simulations permettent de montrer qu'une politique mixte combinant variation de la production et changement de pratiques est préférable à une politique s'appuyant sur un seul de ces instruments.

Nos simulations permettent également d'apporter une réponse à la question du degré de ciblage optimal des politiques régionales. Celui-ci n'est pas le même pour les deux types d'action. Lorsqu'il s'agit de soutenir le niveau de l'activité, c'est-à-dire de mener une politique de demande, il est préférable de conduire une action très ciblée, en se focalisant sur un petit nombre de secteurs d'activité dont le contenu en bio-emploi est le plus important. Le coût d'une politique de demande devient rapidement prohibitif lorsqu'elle est mal ciblée. En revanche, lorsque l'objectif de l'action publique est de changer les pratiques, il convient au contraire de privilégier un ensemble large de secteurs. Changer un peu les pratiques sur un ensemble large de secteurs peu apporter des gains en bio-emplois beaucoup plus significatifs qu'un changement profond de pratiques sur un petit nombre de secteurs.

Pour soutenir à la fois la biodiversité et l'emploi, il faut donc conduire une politique mixte, avec des actions tant côté demande que côté offre, tout en ciblant de façon différente ces deux types d'action. Il importe de soutenir l'activité d'un petit nombre de secteurs, d'ores et déjà intense en bio-emploi, tout en changeant les pratiques d'un nombre plus large de secteurs, riches en emplois mais encore pauvres en bio-emplois. La stratégie régionale devrait donc consister à peu cibler l'action sur l'offre, afin d'inciter les pratiques favorables à la biodiversité sur un grand nombre de secteurs, tout en ciblant les mesures de demande sur un petit nombre de secteurs, afin de soutenir la production des secteurs les plus intensifs en emplois favorables à la biodiversité.

Sommaire

Introduction

- I. Emploi et biodiversité : une littérature encore émergente
- II. Le périmètre et le protocole pour quantifier les emplois favorables à la biodiversité
- III. Bio-emplois et emplois induits : quelles stratégies pour les politiques publiques ?

Conclusions

Bibliographie

Annexes

Annexe 1 : Sigles et acronymes

Annexe 2: Glossaire

Annexe 3 : Liste des personnes interrogées

Annexe 4: Fiches des « bio-coefficients »

Annexe 5 : Fiche sur les emplois à impact négatif sur la biodiversité

Introduction

Avec 18.5% de la population française métropolitaine et seulement 2% du territoire métropolitain, l'Ile-de-France se caractérise par une forte densité de population, un bassin d'emplois important ainsi qu'un territoire qui reste majoritairement rurale lorsque l'on s'éloigne du centre. Néanmoins, la pression de l'urbanisation sur les espaces naturels conduit à une diminution de ces espaces et une fragmentation des milieux qui a été accrue durant les dernières décennies. Il s'agit donc aujourd'hui d'intégrer les problématiques relatives à la protection de la biodiversité dans l'ensemble des secteurs d'activités pour une meilleure prise en compte et une meilleure connaissance de celle-ci de la part des professionnels.

Il apparait pertinent de placer les problématiques liées à la biodiversité au cœur des politiques publiques dans une région où cohabitent une richesse en biodiversité remarquable et une activité économique dynamique. L'un des enjeux consiste à comprendre sur quels leviers il est possible de jouer pour élever la conscience qu'ont les individus de l'importance de la protection de la biodiversité pour l'emploi et le développement économique et d'augmenter les actions effectives qui lui sont favorables. Pour cela, il est important de repérer qui sont les acteurs de la biodiversité.

L'objectif de cette étude est de recenser les emplois favorables à la biodiversité en lle-de-France et les emplois qui sont induits par les activités favorables à la biodiversité. Pour y parvenir, nous construisons un indicateur : le bio-coefficient. Cet indicateur nous permet de recenser dans chaque secteur d'activité les emplois favorables à la biodiversité. Ensuite, nous identifions, grâce à des simulations de politiques publiques, les leviers permettant de développer ces emplois. L'objectif est de comprendre quelles seraient les actions politiques à mener, et de conseiller les décideurs politiques en leur indiquant sur quels secteurs et pour quels emplois ils doivent agir prioritairement pour augmenter et transformer les emplois actuels en emplois favorables à la biodiversité.

Afin de répondre aux objectifs de l'étude, trois étapes de travail ont été définies :

- Etape 1 : élaboration du protocole, de la méthodologie (définition de la démarche scientifique)
- Etape 2 : collecte et consolidation des données (étape de recensement des bio-emplois*, des emplois induits* et des bio-emplois induits*)
- Etape 3 : Analyse et traitement des données, description des emplois favorables à la biodiversité et simulation de scénarii prospectifs

La première partie du présent rapport expose le périmètre, la méthodologie ainsi que les résultats du recensement des bio-emplois, des emplois induits et des bio-emplois induits. La deuxième partie présente notre outil de simulation, baptisé SPIDER, et expose les différentes politiques publiques qui ont été simulées afin de chiffrer les effets de politiques régionales de soutien à l'emploi favorable à la biodiversité.

L'ensemble des sigles et acronymes sont présentés dans l'annexe 1 Les mots suivis d'un astérisque sont définis dans le glossaire en annexe 2

I. Les emplois et la biodiversité : une littérature encore émergente

La mesure de l'emploi favorable à la biodiversité relève d'une démarche analytique novatrice. Jusqu'ici, les travaux appliqués se sont concentrés sur les effets sur l'emploi des politiques de protection de l'environnement. Dès le milieu des années 1970, un grand nombre d'études consacrées aux conséquences sur l'emploi des politiques de l'environnement sont réalisées, indépendamment de leurs dimensions en termes de coûts externes et de bien-être social. Seuls quelques articles utilisant un modèle d'équilibre général (Bovenberg, Goulder) traitent simultanément la question du niveau optimal de la taxe sur la pollution et de son impact sur l'emploi. Nous pensons ici particulièrement à la littérature consacrée à la notion de double dividende, lorsque l'instauration d'une taxe environnementale, à recettes budgétaires constantes, génère simultanément un bénéfice en termes d'emploi et d'environnement (Chiroleu-Assouline, 2001)¹.

Des études récentes portent sur l'impact spécifique en termes d'emploi des politiques contre l'effet de serre. Par exemple, le développement des activités vertes en France (secteur résidentiel, transports, énergies renouvelables) permettrait de doubler leur niveau d'emploi entre 2007 et 2012, dans le cadre de la mise en place de certains objectifs du Grenelle de l'Environnement (ADEME (2008²). Au-delà de cette approche sectorielle, Quirion et Demailly³ prévoient, pour un prix donné du baril de pétrole, la création de 684 000 emplois en France dans la perspective d'une réduction de 30% des émissions de CO2 d'ici à 2020, en tenant compte des destructions et créations d'emplois (directs et indirects) mais aussi des emplois induits (WWF et CIRED, 2008).

a) Enjeux et méthodes

Il existe plusieurs méthodes pour évaluer l'impact des mesures de la politique environnementale sur l'emploi. Quirion (1999)⁴ utilise la méthode dite de contenu en emploi en calculant, pour chaque option organisationnelle, technique ou fiscale, le nombre d'emplois (directs, indirects et induits) créés par euro dépensé. Il s'inspire de la démarche mise en œuvre par Husson (1994)⁵ qui cherche à calculer un contenu global en emploi dans l'économie française en prenant en compte les dépenses directes de travail au sein de chaque branche et les flux de travail transitant par les échanges inter-industriels. Notre étude s'inscrit dans ce même courant méthodologique.

Analyser les effets sur l'emploi de la biodiversité peut éclairer à la fois le débat sur l'érosion de la biodiversité et sur les moyens d'y faire face, et celui de la lutte contre le chômage et des politiques publiques pour l'emploi. La prise en compte des effets sur l'emploi de la biodiversité reste cependant mal connue et peu comptabilisée. Il n'existe en effet que quelques études qui tentent de recenser le nombre d'emplois dédiés à la protection de la biodiversité. Néanmoins on sait que ce nombre va être amené à augmenter, dans un contexte de durcissement des exigences en matière de protection de la biodiversité. La littérature internationale est encore très éparse, voire inexistante. Certes, il existe une vaste littérature sur la biodiversité, y compris des recherches économiques, mais ces travaux sont sans lien avec la question de l'emploi. Les travaux économiques sont plutôt centrés sur l'évaluation de l'apport économique de la biodiversité et le rôle des politiques de conservation. Nous pensons à un

¹ M. Chiroleu-Assouline, *Le double dividende : les approches théoriques*. Revue française d'Economie, 2001, 16, 2, 119-147.

² Ademe, *Marchés*, *emplois et enjeu énergétiques des activités liées à l'efficacité énergétique et aux énergies renouvelables : situation 2006-2007 – perspectives 2012*, étude réalisée par la société In Numeri, juillet 2008.

³ P. Quirion et D. Demailly, -30% de CO2= + 684 000 emplois, étude pour le WWF, CIRED, 2008

⁴ P.Quirion, Les conséquences sur l'emploi de la protection de l'environnement : l'apport des études de contenu en emploi, Thèse de Doctorat, Ecole des Mines de Paris, 2009.

⁵ M. Husson, *Le contenu en emploi de la demande finale*, La Revue de l'IRES n°14, hiver 1994.

article de Sinclair-Desgagné⁶ et au chapitre consacré à la biodiversité dans *Perspectives de l'environnement de l'OCDE à l'horizon 2030*, parmi d'autres travaux.

Peu d'études s'intéressent à l'emploi dans le domaine de la biodiversité. Nous en retenons deux, réalisées par le Service de l'Observation et des Statistiques⁷, d'une part, et le réseau TEE⁸, d'autre part. Leur apport peut être éclairé et complété par les travaux du Comité de filières, sur lesquels notre démarche a pu s'appuyer.

b) Mesurer les éco-activité et l'emploi environnemental

La première étude, menée par le Service de l'Observation et des Statistiques, s'appuie sur une démarche initiée au niveau européen par Eurostat. L'idée est de définir le périmètre du « domaine environnemental » et de chiffrer les éco-activités, la « somme des éco-activités » constituant le domaine environnemental. Ces éco-activités sont les activités de production de biens ou de services concourant à la protection de l'environnement et à la gestion des ressources naturelles. La protection de l'environnement vise à prévenir, diminuer les émissions de polluants et les autres dégradations causées à l'environnement. L'approche adoptée retient les activités qui participent à la production d'écoproduits pour lesquels il existe des classifications plus précises (Classification des Produits Français eux-mêmes correspondant à des postes de la Nomenclature des Activités Françaises). Les résultats sont tirés des comptes de production au niveau français et des classifications européennes CReMA⁹ et CEPA¹⁰ du Système Européen des Comptes de Dépense de Protection de l'Environnement (SERIEE) et s'appuient sur les dépenses de protection de l'environnement. Ce concept mesure l'effort financier des ménages, des entreprises et des administrations publiques pour la prévention, la réduction ou la suppression des dégradations de l'environnement. Au total, l'emploi environnemental dans les éco-activités¹¹ * représenterait environ 400 000 emplois, et serait en hausse depuis 2004.

Au sein de l'emploi environnemental, la catégorie « Nature, biodiversité et paysages » représenterait 11 100 emplois et 3% des dépenses des entreprises pour la protection de l'environnement. La dépense des administrations publiques en faveur de la protection de la biodiversité représenterait 8% de la dépense totale en faveur de la protection de l'environnement, et celle des ménages, 1%.

La dépense pour cette catégorie se maintient en 2007 autour de 1 ,5 milliard d'euros¹². Les dépenses liées à la protection de la biodiversité et des paysages s'inscrivent dans les domaines suivants :

- la gestion des espaces et des espèces : développement du réseau des espaces gérés au titre de la protection des espaces, des espèces et des paysages et conservation *in situ*,
- la connaissance : inventaires, expertises relatives au patrimoine naturel et aux paysages, et conservation ex situ.
- la réduction des pressions : protection de la biodiversité et des paysages par les secteurs productifs,

⁶ Analyse économique et préservation de la biodiversité, Economie publique (n°16-2005/1) OCDE, 2008

⁷ Les éco-activités et l'emploi environnemental – Périmètre de référence – Résultats 2004-2007 (Etudes et documents n°10) – juillet 2009

⁸ Territoires Emploi Environnement, Objectif Biodiversité. Emplois, métiers, formation, mai 2010

⁹ Classification de gestion des ressources naturelles

¹⁰ Classification des Activités de Protection de l'Environnement

¹¹ « Les éco-activités comprennent la production de biens ou de services concourant à la protection de l'environnement et à la gestion des ressources naturelles. Elles sont réalisées pour l'essentiel par des entreprises marchandes mais aussi par des administrations publiques. Elles incluent les activités de protection de l'environnement internes aux entreprises, activités dites auxiliaires et qui ne font pas l'objet d'une vente, mais d'une dépense. » (CGDD, 2009)

¹² CGDD Références, juillet 2009, *L'économie de l'environnement en 2007.* Rapport de la commission des comptes et de *l'économie de l'environnement.* Edition 2009

les autres actions de protection de l'environnement.

Cette étude recèle certaines limites, au regard de notre démarche. Elle met avant tout l'accent sur l'emploi environnemental et non uniquement l'emploi favorable à la biodiversité, qui constitue une partie des emplois environnementaux¹³. D'autre part, la hausse de l'emploi du domaine « nature, biodiversité et paysage » ne signifie pas des créations nettes d'emploi car il peut y avoir des effets de substitution entre les activités et au sein des emplois. En outre, la définition d'une catégorie biodiversité comme la gestion des espaces et des espèces, la connaissance et la réduction des pressions, ne prend pas en compte toutes les caractéristiques de la biodiversité, entendue comme : *l'ensemble du tissu vivant, de ses fonctions écologiques et de ses services éco-systémiques* (cf. supra, Partie 2 : Périmètre de l'étude).

Comme le signale à juste titre le rapport du comité de filière biodiversité rendu en janvier 2010¹⁴, l'étude du Service de l'Observation et des Statistiques (SOeS) n'intègre pas les métiers de la recherche ou de l'éducation, les professionnels du zoo, les agents des douanes, juristes spécialisés, professionnels d'entreprises pour la gestion des espaces, techniciens cynégétiques... Selon le comité de filière, « il n'est donc pas absurde de considérer que le secteur de la biodiversité et des services écologiques mobilise de l'ordre de 20 000 professionnels ». Pour parvenir à cette estimation, le comité a utilisé la définition suivante : les métiers dont « l'activité principale est de contribuer à la connaissance, la gestion, la valorisation, et la restauration de la biodiversité, ou de contribuer à la prise en compte des enjeux de biodiversité dans les autres activités économiques ». C'est la définition que nous allons reprendre dans notre étude. Toutefois, nous ne considérerons pas uniquement l'emploi en termes d'activité principale. L'une des originalités de notre étude est en effet de calculer l'impact d'un emploi sur la biodiversité en fonction de la part du temps de travail qui lui est consacrée, même s'il ne s'agit pas de l'activité principale.

Le rapport du comité de filière fait également le constat que dans la plupart des entreprises et filières, les emplois ne seront pas créés de toutes pièces mais proviennent de la reconversion et de l'adaptation des compétences associées à des emplois existants. Il s'agit d'un aspect essentiel du « verdissement » des emplois, que notre étude tente de prendre en compte. L'idée est de ne pas se limiter au cœur des emplois verts. Ces emplois du « cœur vert » se retrouvent dans des secteurs où l'activité principale a un impact positif sur la biodiversité, à savoir et pour l'essentiel, dans des structures qui gèrent des espaces naturels ou espaces sensibles (ex : gestionnaire de parc naturel régional, animateur nature).

Notre étude doit prendre en compte les évolutions de métiers traditionnels et des métiers qui contribuent à la prise compte de la biodiversité dans d'autres secteurs économiques, et qui ne seraient pas *a priori* considérés comme ayant un impact positif sur la biodiversité.

L'objectif du comité est de structurer une filière professionnelle de la biodiversité, de créer un observatoire de ces métiers et de mieux adapter les outils existants. Dans cette perspective, le rapport du comité de filière comme la plupart des études déplore l'inadaptation des nomenclatures existantes (ROME, RIME, NAF). Le rapport pointe aussi l'absence de prise en compte de la biodiversité dans quelques autres comités de filière (ex : énergies renouvelables, métiers du bâtiment). Ce sont des aspects que nous tentons de prendre en compte.

¹⁴ Rapport du comité de filière biodiversité et services écologiques. Comité national du plan de mobilisation des territoires et des filières sur le développement des métiers de la croissance verte

¹³ Les emplois liés à l'environnement comprennent les emplois liés par exemple aux ressources énergétiques, au transport, aux déchets, à l'eau, à la protection et conservation des espaces naturels et de la biodiversité. Ces emplois recoupent les emplois liés aux éco-activités décrits plus haut.

Le Groupement d'Intérêt Public Agence technique des espaces naturels (ATEN) tente de pallier ces difficultés en élaborant, depuis 10 ans, des référentiels pour les métiers relatifs à la biodiversité extraordinaire. Il comptabilise près de 25 métiers différents, du directeur au garde, de l'animateur au conservateur. Environ 5 000 salariés travailleraient à la protection de la biodiversité dans un espace naturel protégé ou sur un site Natura 2000 (dont 30% sont des emplois dans les Parcs Naturels Régionaux) (cf. Rapport du Comité de filière, 2010). Par rapport à ce dénombrement, l'une des originalités de notre étude est de dépasser ces métiers classiquement favorables à la biodiversité.

c) Les métiers et emplois de la biodiversité

Une distinction entre emploi et métier semble nécessaire. Un métier correspond à une profession qui demande des qualifications précises, un apprentissage spécifique comme par exemple le métier de garde forestier. L'emploi, quant à lui correspond à l'exercice d'un métier. Il est le résultat d'un contrat entre employeur et employé qui définit la réalisation d'un travail en échange d'une rémunération. L'objet de notre étude porte sur le recensement des **emplois favorables à la biodiversité.**

La seconde étude est réalisée par le réseau TEE¹⁵. La définition retenue est celle du Comité national de filière: « Les métiers de la biodiversité sont ceux dont l'activité principale est de contribuer à la connaissance, la gestion, la protection, la valorisation et la restauration de la biodiversité, et également ceux contribuant à la prise en compte des enjeux de biodiversité dans les autres activités économiques».

Alors que les premiers sont principalement exercés dans des « structures qui gèrent des espaces naturels protégés ou identifiés comme sensibles », les seconds tentent de sortir de ce cadre classique pour une approche plus transversale. L'accent est une nouvelle fois mis sur le fait que la biodiversité concerne potentiellement tous les secteurs d'activités. Dans certains secteurs, la prise en compte de la biodiversité ne se traduirait pas par l'apparition de nouveaux métiers mais par l'évolution de métiers déjà existants.

Pour ce faire, quatre grands domaines professionnels ont été retenus pour l'étude :

- la gestion d'espaces allant des espaces naturels protégés ou non (dont les milieux aquatiques, les espaces forestiers), les espaces intermédiaires tels que les talus et jusqu'aux espaces verts ;
 - l'éducation à l'environnement et au développement durable ;
 - la production agricole et sylvicole ;
 - l'aménagement du territoire et l'urbanisme.

L'étude donne aussi des informations sur les formations en environnement et biodiversité. Il s'agit d'un aspect que nous ne considérons pas dans le présent travail.

A l'issue de l'envoi de questionnaires quantitatifs et de 22 entretiens en face à face avec les directions ou les responsables des ressources humaines, et des professionnels dont l'activité contribue à la protection de la biodiversité, TEE a recensé près de 12 690 personnes travaillant dans des structures, plutôt de petite taille. Les réponses provenaient à plus de 50% d'associations et pour plus d'un quart de collectivités territoriales, qui travaillaient principalement dans les domaines d'éducation à l'environnement et de la gestion des espaces verts. 11 350 salariés travaillent dans trois collectivités territoriales. 1332 emplois sont consacrés de manière totale à la protection de la biodiversité. Les statistiques montrent qu'il s'agit principalement d'hommes âgés de plus de 36 ans. La majorité de ces salariés est en CDI, avec une qualification faible ou élevée. Ils ont suivi à 70% des formations liées à la biodiversité.

-

¹⁵ Territoires Emploi Environnement, *Objectif Biodiversité. Emplois, métiers, formation*, mai 2010

Le rapport de TEE souligne que, alors qu'il existe des besoins, notamment dans les domaines de l'écologie et du naturalisme, la gestion, les pratiques relatives à la biodiversité, les outils et techniques, il existe des difficultés de recrutement correspondant à un certain nombre de compétences recherchées.

Au total, la connaissance des emplois ayant un impact favorable sur la biodiversité est encore peu précise. Néanmoins, les études se multiplient et permettent d'apporter des informations supplémentaires.

II. <u>Le périmètre et le protocole pour quantifier les emplois favorables à la biodiversité</u>

a) Définitions et périmètre du champ de l'étude

Les contours et les définitions utilisées dans notre étude ont été adoptés à la suite d'une série de 19 entretiens menés auprès de spécialistes de la biodiversité et de professionnels¹⁶ appartenant à des secteurs d'activité différents (cf. Annexe 1).

Nous considérons les emplois 17 ayant un impact favorable sur la biodiversité, que nous nommons « bioemplois » comme étant ceux dont l'activité ou une part de l'activité contribue à la connaissance*, la
gestion*, la protection*, la valorisation* et la restauration* de la biodiversité de façon intentionnelle ou
non18, et ceux contribuant à la prise en compte des enjeux de biodiversité dans les autres activités
économiques. Ils comprennent aussi les activités de communication* et de financement* de projets
favorables à la biodiversité. La biodiversité* est ici définie comme l'ensemble du tissu vivant, de ses
fonctions écologiques* et de ses services écosystémiques*19.

Encadré 1 : La biodiversité : une dimension essentielle du vivant

Le maintien de la biodiversité est un enjeu vital pour les sociétés humaines du fait des biens et services qu'elle procure : 40% de l'économie mondiale sont directement liés à l'utilisation des écosystèmes naturels et semi-naturels et des espèces vivantes.

Les pressions sur la biodiversité se sont considérablement renforcées au cours du demi-siècle dernier accentuant son érosion. Le sommet de la terre à Rio en 1992 a ainsi permis l'adoption de la convention sur la diversité biologique (CDB) afin de stopper l'érosion de la biodiversité. Ce traité comporte trois objectifs: la conservation de la diversité biologique, l'utilisation durable de ses éléments et le partage juste et équitable des avantages découlant de l'exploitation des ressources génétiques. De ces objectifs ressort un ensemble de thèmes abordés par la CDB dont l'intégration de la préservation de la biodiversité dans un grand nombre de politiques publiques des pays signataires dont fait partie la

¹⁶ Les interlocuteurs, spécialistes et professionnels, nous ont été indiqués, pour l'essentiel, par Natureparif et le comité de suivi de l'étude.

¹⁷ Pour des raisons de transparence et de visibilité sur le marché du travail, nous comptabilisons uniquement les salariés et non les actifs non salariés (bénévoles, etc.).

¹⁸ Pour définir notre objet, nous avons bénéficié de la réflexion du comité de filière biodiversité et nous réutilisons sa définition

¹⁹ Nous ne prenons en compte que la biodiversité non humaine, dans la mesure où une application stricte de ces définitions conduirait à inclure toutes les professions de santé, ce qui nous éloignerait de notre objet. Autre point, nous ne considérons que la biodiversité dite « vivante» et non la biodiversité « fossile ».

Notons que cette définition conduit à distinguer les emplois favorables à la biodiversité des emplois verts (liés à l'environnement et à la croissance verte de manière plus globale). Il s'agit d'étudier les emplois favorables à la biodiversité au-delà des emplois du « cœur vert », c'est-à-dire l'ensemble des emplois présents dans les structures de gestion entièrement dédiées aux espaces naturels et espaces verts (ex : technicien forestier, gestionnaire de parc naturel, etc.).

Figure1 : Périmètre de l'étude

Quelques exemples qui illustrent la figure 1 :

1) Exemple d'emplois favorables à la biodiversité qui ne sont pas directement liés au développement durable: les emplois de chercheurs liés à la compréhension des organismes biologiques. 2) Exemple d'emplois liés au développement durable qui ne sont pas considérés comme directement favorables à la biodiversité: les emplois de techniciens d'usines de recyclage des déchets.

L'étude comptabilise la part de temps de travail des emplois consacrée favorablement à la biodiversité. La part de temps relevant d'un impact négatif ou neutre de ces emplois n'est pas retenue. Ainsi, certains secteurs étudiés peuvent avoir, de prime abord, un impact négatif sur la biodiversité (ex : secteurs du BTP), mais notre approche considère le temps de travail consacré aux pratiques favorables à la biodiversité dans le secteur (ex : réalisation de passage à faunes).

Encadré 2 : Test sur les emplois à impact négatif sur la biodiversité

Le comité de suivi avait soumis l'idée de réaliser en parallèle une étude « miroir » sur les emplois ayant un impact négatif sur la biodiversité. Ce critère a été testé (cf. annexe 5) dans l'agriculture et au vu des réactions des interlocuteurs, relatives à la diffusion d'informations, il ne nous a pas paru possible d'intégrer ce critère dans notre étude.

Hypothèse sur le champ spatio-temporel

L'étude porte sur les emplois ayant un impact sur la biodiversité et localisés en région lle-de-France. Les emplois sont localisés en lle-de-France mais la biodiversité impactée n'a pas de limite géographique. Nous regardons les emplois franciliens ayant un impact favorable sur la biodiversité où qu'elle se trouve. Ainsi, nous tenterons, dans la mesure du possible, de considérer le maximum d'effets quelles que soient les échelles de temps et d'espace.

Certains emplois similaires (même profession dans un même secteur d'activité) peuvent avoir un impact différent sur la biodiversité en fonction du site de production sur lequel ils s'établissent. Par exemple, les pratiques favorables à la biodiversité peuvent varier entre deux sites de production électrique en lle-de-France en fonction de la densité urbaine. Dans cette étude, nous faisons l'hypothèse de la constance de l'impact sur la biodiversité de deux emplois similaires d'un établissement à l'autre, d'un site à l'autre, d'une personne à l'autre. Cette hypothèse permet les comparaisons spatiales et ouvre la possibilité de dupliquer la méthode à toutes les régions de France.

b) Un protocole pour le recensement des bio-emplois qui s'appuie sur des monographies sectorielles

L'objectif est de dénombrer les emplois favorables à la biodiversité dans la région lle-de-France. Pour y parvenir nous repérons dans chaque secteur et chaque profession la part des bio-emplois. Nous avons constitué un indicateur, le bio-coefficient, à partir d'une analyse détaillée des secteurs d'activité et de la

mobilisation de dires d'experts professionnels et scientifiques. Cette méthodologie suppose de combiner un travail statistique assez fin sur des nomenclatures issues de l'INSEE avec un ensemble d'entretiens menés auprès d'experts des différents secteurs d'activité et/ou des experts de la biodiversité.

Les bio-emplois peuvent être distingués selon qu'ils sont comptabilisés directement ou qu'ils sont induits. Les bio-emplois correspondent aux emplois ayant un impact favorable sur la biodiversité dans les secteurs d'activité ayant un lien « direct », une interaction physique avec la biodiversité : ils se trouvent généralement dans les secteurs qui ont un lien avec les ressources naturelles ou une emprise sur les milieux, etc. (ex : activités du cœur vert, carrier, B.T.P, entreprises de gestion de l'eau et des déchets, etc.). La construction des bio-coefficients et la quantification de ces bio-emplois font l'objet de 19 fiches sectorielles organisées de la manière suivante (cf. annexe 4) :

- Agriculture
- Sylviculture / Exploitation forestière et gestion des milieux forestiers
- Paysagiste / Gestion des espaces verts
- Ingénierie Ecologique
- Bâtiment Végétalisation
- Activité d'extraction / Carrier
- Production/ Transport / Distribution d'électricité
- Production/Distribution de combustibles gazeux
- Construction / Urbanisme
- Travaux publics
- Aménagement / Transport
- Banque/ Finance
- Consultants / Bureau d'études / Cabinets de conseils
- Compensation
- Gestion Eau/ Déchets Services à l'environnement
- Recherche / Enseignement
- Agents publics
- Association
- Chantier d'insertion / Gestion des espaces verts

Un certain nombre de secteurs d'activité ne renvoie pas « directement » à des activités ayant un impact favorable à la biodiversité : ce sont les activités qui dépendent des bio-emplois et qui se situent en amont ou en aval de la filière. Par exemple, l'agriculture induit des emplois en amont de sa production dans le secteur du machinisme agricole et des emplois en aval dans les industries alimentaires diverses. Les emplois favorables à la biodiversité dans l'agriculture sont comptabilisés comme « bio-emplois » et les emplois induits par l'agriculture dans le secteur du machinisme agricole et dans celui de l'agro-alimentaire sont comptabilisés comme « emplois-induits ». Si ces derniers sont favorables à la biodiversité, nous parlons alors de « bio-emplois induits ». Ainsi nous recensons trois catégories d'emplois :

- Les bio-emplois
- Les emplois induits
- Les bio-emplois induits

Ces emplois nommés « emplois induits » et « bio-emplois induits » concernent notamment le secteur des services. Seul, le secteur « banque et finance » est étudié pour ses bio-emplois (cf. annexe 4, fiche n°12) afin de prendre en compte la dimension « financement » de notre définition.

Ces bio-emplois et emplois induits sont recensés grâce à la construction d'un **Tableau Entrées-Sorties** (**TES**) régional exprimé en emplois dont nous développons la construction ci-dessous.

En s'appuyant sur ces éléments de méthode, nous avons cherché à être le plus précis et exhaustif possible. Il reste que certains bio-emplois ont pu ne pas être comptabilisés.

• La construction des bio-coefficients

Les bio-emplois sont comptabilisés de deux manières en fonction de la part de temps de travail consacrée favorablement à la biodiversité. Ils sont mesurés en **effectifs occupés* (EO)** selon un critère majoritaire, dès lors que la part du temps de travail consacré favorablement à la biodiversité est majoritaire sur l'ensemble de leur temps de travail. Nous mesurons également les emplois en **équivalent temps plein* (ETP)**, selon un critère proportionnel. Un emploi en équivalent temps plein reflète la part de temps de travail consacré favorablement à la biodiversité.

Afin de comptabiliser les bio-emplois nous avons construit un indicateur : **le bio-coefficient**. Il correspond à la part de temps consacrée favorablement à la biodiversité relativement à l'ensemble du temps de travail pour une activité spécifique. *Un bio-coefficient de 0.1 signifie que 10% du temps de travail est consacré à des activités ayant un impact favorable sur la biodiversité.*

Notons que l'unité de référence est le temps de travail consacré favorablement à la biodiversité, l'intensité ou la qualité de l'impact sur la biodiversité n'entre pas en compte dans la construction des bio-coefficients.

Encadré 3 : Cas de figures dans le calcul des ETP et EO

- Si le bio-coefficient est inférieur à 0.5 → nous comptabilisons les emplois uniquement en ETP
- Si le bio-coefficient est supérieur ou égal à 0.5 → nous comptabilisons les emplois en ETP et en EO
- Si le bio-coefficient est égal à 1 → nous comptabilisons les emplois en ETP et en EO avec ETP = EO

Les experts interrogés pour la mesure des bio-emplois sont le plus souvent les directeurs du développement durable, les chargés de mission environnement et/ou biodiversité ou encore les responsables emploi/formation (au total 120 experts ont été interrogés, cf. Annexe 3). Leurs avis nous permettent de mieux saisir les réalités des métiers et de cibler les emplois qui nous intéressent : les agents ayant une activité favorable à la biodiversité. Cependant, les professionnels peuvent considérer un certain nombre d'activités comme favorables à la biodiversité, sans qu'elles ne le soient, ou au contraire ils peuvent ignorer que leurs différentes activités ont un impact favorable à la biodiversité. Pour cela, nous interrogeons des experts scientifiques spécialistes de l'activité que nous souhaitons étudier et nous consultons la littérature sur le sujet afin de comprendre l'impact positif effectif d'une activité.

Au vu de la variabilité des avis d'experts sur certains bio-coefficients, dans certains cas, deux *scenarii* sont construits. Nous retenons une hypothèse haute basée sur un scénario « optimiste » et une hypothèse basse basée sur un scénario « pessimiste » du temps consacré favorablement à la biodiversité. Par exemple, pour l'agriculture raisonnée nous avons retenu une hypothèse haute de 0.6 et une hypothèse basse de 0.4 (cf. annexe 4, fiche 1). Ainsi, 40% ou 60% du temps de travail d'un agriculteur qui pratique du raisonné est favorable à la biodiversité. Le bio-coefficient final est la moyenne des deux hypothèses (sauf exception).

De plus, pour une même fonction au sein de structures différentes, le bio-coefficient peut être différent. Un juriste, travaillant dans une association spécialisée en environnement peut passer 100% de son temps en faveur de la biodiversité, mais seulement 15% de son temps s'il travaille dans un cabinet de conseil qui s'occupe de questions moins spécifiques à la biodiversité. Le juriste (comme un ensemble

de professions liées aux activités de support administratif de diverses structures) se voit attribuer un bio-coefficient en fonction de l'activité principale, répertoriée par l'INSEE, de sa structure.

Appliquer cette méthode de quantification à tous les secteurs est une tâche très difficile car un grand nombre de secteurs et d'activités ne s'y prête pas. Par exemple, une estimation du temps consacré à la biodiversité est délicate lorsque les pratiques favorables à la biodiversité sont confondues avec le reste de l'activité (ex : construction d'un passage à faune autoroutier dans le secteur des travaux publics). Lorsque ce type de cas se présente, nous utilisons deux autres méthodes de quantification. La première propose une comptabilisation directe des bio-emplois, sans passage par le bio-coefficient. Nous accompagnons les professionnels des différentes entreprises ou secteurs dans l'identification précise des salariés (chaque personne physique a été comptabilisée individuellement) dont l'activité est favorable à la biodiversité. La deuxième méthode consiste à comptabiliser les bio-emplois grâce aux dépenses consacrées à la réalisation de pratiques favorables à la biodiversité et à l'équivalent en emplois de ces dépenses (ces données peuvent être fournies par les fédérations de branches), (cf. annexe 4, fiche n°11 – SNCF).

Ces méthodes alternatives ne signifient pas qu'un bio-coefficient ne sera pas construit *in fine*. Le bio-coefficient n'est alors pas construit en amont, comme décrit plus haut, mais il est construit *ex-post*. Une fois les bio-emplois quantifiés, nous les rapportons aux effectifs totaux du secteur d'activité, ce qui nous donne notre bio-coefficient.

Tableau 1 : Méthodes utilisées pour le recensement des bio-emplois

Méthode de construction du biocoefficient à partir des pratiques	Description Estimation de la part de temps de travail consacrée à la réalisation des pratiques favorables à la biodiversité	Processus suivi - Détermination des pratiques favorables à la biodiversité dans le secteur choisi - Construction du bio-coefficient (part de temps favorable à la biodiversité)
favorables à la biodiversité		- Application du bio-coefficient aux effectifs totaux du secteur (application à la NES correspondante) → Résultat: Bio-emplois en ETP et EO
Méthode de quantification directe	Comptabilisation directe des bio-emplois : agents dont l'activité a un impact favorable à la biodiversité (ex : les emplois de chargé de mission biodiversité dans le secteur industriel)	- Quantification des bio-emplois en ETP et en EO grâce à des entretiens avec des agents du secteur choisi - Construction du bio-coefficient en reportant ces effectifs aux effectifs totaux (données INSEE) → Résultat : Bio-emplois en ETP et EO
Méthode de passage par les coûts et les dépenses	Passage par les dépenses liées à la protection de la biodiversité /environnement	- Récupération de ratios dépenses/emplois fournis par les fédérations de branches ou les grands groupes eux-mêmes. Passage par

équivalence entre les dépenses et les emplois. Ex, fiche sur les Travaux publics : 1 millions d'euros dépensés = 6 emplois directs + 6 emplois indirects (ratio donné par la FNTP)→ emplois en ETP Hypothèse : Emplois ETP = Emplois EO
- Construction du bio-coefficient en reportant ces effectifs aux effectifs totaux (données INSEE)
→ Résultat : Bio-emplois en ETP et EO

• <u>Le Tableau Entrées-Sorties régional en emplois et la quantification des emplois-induits</u>
Le travail de quantification des bio-emplois, présenté ci-dessus, comprend les emplois directement favorables à la biodiversité en Ile-de-France et ne recouvre pas les emplois induits.

L'objectif est de construire un **outil de simulation** permettant de quantifier le nombre d'emplois induits par les bio-emplois dans un premier temps (partie I du rapport), puis d'évaluer les effets de différents *scenarii* de politiques publiques (changements réglementaires, développement de nouvelles filières, changements des pratiques, etc.) sur les emplois et les bio-emplois (partie II du rapport – le SPIDER). Pour cela, nous avons besoin d'un outil de simulation de l'emploi qui soit à la fois régional et sectoriel. En comptabilité nationale, le Tableau Entrées-Sorties fournit un cadre comptable de référence pour ce type d'outil.

Encadré 4 : Le Tableau des Entrées-Sorties

Le tableau entrées-sorties (TES) est l'un des tableaux des comptes nationaux. Pour une année donnée, il analyse chacun des produits de la nomenclature selon l'origine (produit national ou importations) et sa destination (consommation finale, variations de stocks, investissements et exportations). Pour chaque produit, le TES établit l'équilibre comptable ressources-emplois (Source : INSEE). Le TES utilise la Nomenclature Economique de Synthèse (NES en 16, 36, 114 postes) de l'INSEE qui est une double nomenclature nationale, d'activités économiques et de produits.

Notre objectif est de construire le TES, initialement exprimé en euro, avec des équivalences en termes de travail (contenu en emploi), avec le plus de précision possible.

Nous présentons ci-dessous une version illustrée simplifiée d'un TES dans une économie fermée composée de trois branches et de trois produits élaborés par chacune d'entre elles. Les valeurs sont exprimées en euros sur une année.

Tableau 1 : Matrice des valeurs des consommations intermédiaires en euros

Produits	Branches	Agriculture	Industrie (2)	Services (3)	Total	Demande	Valeur de la
issus de		(1)			CI (4)	Finale (5)	Production (6)
(A) Agricultu	ire	20	30	50	100	100	200

(B) Industrie	50	30	20	100	200	300
(C) Services	40	20	40	100	300	400
(D) Total des CI	110	80	110			
(E) Valeur ajoutée	90	220	290			
Valeur de la production (6)	200	300	400			900

Quelques exemples de lecture :

En colonne, la branche Agriculture (1) utilise des consommations intermédiaires sous forme de produits issus de :

- l'Agriculture (A) : 20 euros sous forme de semences agricoles
- l'Industrie (B) : 50 euros sous forme de combustibles et fertilisants
- les Services (C) : 40 euros sous forme de conseils agronomiques ou de services vétérinaires

En ligne, les produits issus de l'Agriculture (A) sont destinés à être utilisés sous forme de consommations intermédiaires par les branches :

- Agriculture (1) : 20 euros de semences utilisées par l'Agriculture
- Industrie (2): 30 euros de colza destiné à des biocarburants
- Services (3): 50 euros de fruits et légumes destinés à la restauration

Ainsi, 100 euros de produits issus de l'Agriculture ont ainsi été utilisés dans un processus productif dans les trois branches de l'économie. La demande finale (5) de produits agricoles (consommation finale de fruits par les ménages, par exemple) est de 100 euros.

Equilibre ressources-emplois :

Etant donné que nous sommes, dans cet exemple, en économie fermée, les ressources issues de la branche Agriculture constituent la production intérieure vendue dans l'économie (6) (200 euros) et sont utilisées sous forme de consommations intermédiaires (4) (100 euros) et de consommation finale (5) (100 euros).

En ligne, le Produit intérieur brut annuel de cette économie est donné par la somme des trois valeurs ajoutées (E) (90+220+290 = 600 euros).

La matrice des valeurs des consommations intermédiaires en euros nous permet de construire la matrice des coefficients techniques :

Le coefficient technique est le rapport entre la consommation intermédiaire d'un produit par une branche (4) et la production totale de la branche (6).

Nous présentons ci-dessous la matrice des coefficients techniques de cette économie.

Tableau 2 : Matrice des coefficients techniques

Produits	Branches	1	2	3
		Agriculture	Industrie	Services
(A) Agricultu	ire	0,1*	0,1	0,125

(B) Industrie	0,25	0,1	0,05
(C) Services	0,2	0,067	0,1
Total des CI	0,55	0,267	0,275
Valeur ajoutée	0,45	0,733	0,725
Valeur de la production	1	1	1

^{*} Pour une production totale de 200 euros sur l'ensemble de la branche agricole, cette dernière consomme 20 euros en produits de l'agriculture →20/200 = 0.1

Le coefficient technique d'un produit (i) par une branche (j) rapporte la consommation intermédiaire de ce produit par cette branche à la production de la branche (j) : CT(ij) = CI(ij) / P(i)

Exemple : Prenons la branche « Agriculture » et sa consommation en produits issus du secteur de l'industrie :

CT = 50^{20} (CI dans le secteur de l'industrie (B,1)) / 200 (Production Globale de la branche agricole (1,6)) = 0.25 (soit 25 %)

Ainsi, en considérant les technologies comme stables, quel que soit le niveau de la production de la branche agricole, il faudra environ 25 % de produits issus du secteur industriel pour la réalisation de la production de la branche agricole.

Nous examinons à présent l'impact d'un choc sur la demande finale adressée à l'agriculture (exemple : augmentation de la demande de blé pour un montant de 50 euros). En effet, toute augmentation de production engendre à son tour une augmentation de consommations intermédiaires induites au cours de vagues successives. L'objectif est ici de mesurer de combien l'augmentation de la production d'un produit augmente la production d'autres produits qui lui sont liés.

-

²⁰ En millions d'euros

<u>Tableau 3 : Simulation d'un choc de demande et conséquences sur la production</u>

	Variation de la demande finale	Itération 1	Itération 2	Suite Itérations ()	Effet cumulé (coefficient multiplicateur)
1 Agriculture	50	50 x 0,1 =5 50 x 0,25 =12,5 50 x 0,2 =10	5x 0,1 = 0,5 5 x 0,25 = 1,25 5 x 0,2 = 1	()	1,3
2 Industrie			12,5 x 0,1 = 1,25 12,5 x 0,1 = 1,25 12,5x0,067=0,84	()	1,06
3 Services			10 x 0,125 =1,25 10 x 0,05 = 0,5 10 x 0,1 = 1	()	1,037

Pour répondre à cette variation de la demande finale de 50 euros, la branche Agriculture doit utiliser des consommations intermédiaires dans des proportions fixées par sa technologie, en achetant 5, 12,5 et 10 euros de produits issus des branches 1, 2 et 3 respectivement. A leur tour, chacune des trois branches va devoir utiliser des consommations intermédiaires pour répondre à cette vague de demande. Ainsi, par exemple, la branche Agriculture doit produire une valeur de 5 euros et acheter 0,5 euro de biens agricoles, 1,25 euro de biens industriels et 1 euro de services.

Les coefficients techniques permettent de calculer l'impact cumulé d'une variation de la demande finale sur l'ensemble de l'appareil de production. Bien sûr, les effets s'amenuisent au cours des itérations. La production des biens issus de chacune des branches 1, 2 et 3 a ainsi été multipliée par 1,3, 1,06 et 1,037 respectivement.

La logique d'ensemble, qui sous-tend la création de cet outil de simulation, est de calculer la part de la production de chaque branche réalisée par nos bio-emplois, puis d'en évaluer les productions induites en amont et en aval dans chacune des autres branches. Une fois déterminées les productions induites, on calcule leurs équivalents en emplois ou emplois induits.

Le TES, et donc la production de chaque branche et les coefficients techniques existent au niveau national et en millions d'euros. Pour produire des résultats à l'échelle régionale, nous avons construit un TES francilien dont la production a été transformée en équivalent emplois.

Données sur la production : construction d'un TES régional Nous mobilisons le Tableau des Entrées-Sorties national de l'année 2007 ventilé en 114 branches.

Nous calculons ensuite, sur cette base, une matrice des coefficients techniques en divisant la valeur des consommations intermédiaires de chacun des produits par celle de la production de la branche, et ce, pour chaque branche (soient 114 x 114 coefficients techniques). A ce stade, nous ne manipulons que des données nationales, et non pas régionales.

Afin de construire le TES régional en équivalent emplois nous avons établi un certain nombre d'hypothèses.

<u>Hypothèse 1</u> : Les coefficients techniques de l'Île-de France sont supposés être les mêmes que ceux de l'ensemble de la France.

Illustration : 1000 € de produits agricoles franciliens requièrent 28 € de produits issus de la parachimie, ce qui correspond à la valeur nationale. Le coefficient technique dans ce cas est bien de 0,028.

On ne s'intéresse qu'aux consommations intermédiaires (CI) non importées, de façon à pouvoir *in fine* mesurer des emplois induits sur le territoire national. Notre objet n'est pas de dénombrer les emplois induits en dehors du territoire national *via* les importations. L'hypothèse technique que nous posons est que, pour une branche donnée, la part des importations est différente pour chacun des 114 produits utilisés sous forme de CI. Mais pour un produit donné, la part des importations dans les CI est la même pour toutes les branches.

<u>Hypothèse 2 :</u> Au niveau national, pour un produit donné disponible dans l'économie, nous connaissons sa part importée. Au niveau régional, nous ne connaissons pas cette proportion faute de données douanières franciliennes. Plus précisément, nous ne connaissons pas le détail des importations dans les CI de chaque branche. Lorsque nous reconstituons un TES régional nous faisons donc l'hypothèse que la part des importations dans les CI de chaque branche d'un produit donné est la même pour toutes les branches.

Illustration: L'industrie laitière et la fabrication de mobilier ont des CI en électricité (branche « Production et distribution d'électricité ») différentes, mais à niveau de CI donné, la part des importations dans les CI d'électricité est supposée être la même pour chacune des branches.

Le TES ainsi constitué nous permet de calculer la production induite suite à n'importe quel choc de demande (exemple : variation des dépenses publiques), qu'il soit symétrique ou asymétrique (affectant une seule branche ou toutes les branches). Le calcul est fait pour chaque année (les données étant actualisées selon un pas annuel).

L'étape suivante nous permet de passer de la production à l'emploi puis aux emplois induits.

Données sur l'emploi

Nous mesurons l'emploi en EO et en ETP dans chaque branche à un niveau de nomenclature très fin (114 postes) et à l'échelle de la région lle-de-France, à partir de deux sources.

Pour l'essentiel, nous avons eu recours à une source administrative et fiscale, les Déclarations Annuelles de Données Sociales (DADS), dont la dernière année disponible au niveau de finesse requis est l'année 2005. Nous avons extrait des DADS l'ensemble des effectifs franciliens.

Les DADS constituent la meilleure source pour dénombrer des emplois dans les secteurs marchands mais couvrent moins bien ceux des activités non marchandes. C'est pourquoi, nous avons complété cette information par une exploitation spécifique des Enguêtes Emploi (EE) de l'INSEE.

Encadré 5 : Les DADS

La Déclaration Annuelle de Données Sociales est une formalité déclarative que doit accomplir chaque année toute entreprise employant des salariés. Elle contient des renseignements détaillés sur les salariés embauchés, tels que leurs périodes d'emplois (début, fin de période), leurs salaires (net et brut), leur condition d'emploi (temps complet, temps partiel, intérimaire), le type d'emploi (aidé, stagiaire ou emploi ordinaire) et leur qualification (Catégorie Socioprofessionnelle à deux chiffres). En outre, elle permet de distinguer les salariés suivant d'autres caractéristiques individuelles telles que le

sexe, l'âge ou la commune de résidence et de travail. Enfin, elle fournit des informations sur les établissements ou entreprises employeurs, telles celles concernant leurs effectifs (moyens ; bruts au 1er janvier ou au 31 décembre par exemple), le caractère marchand ou non, ainsi que le code APET (Activité Principale de l'Entreprise) correspondant à l'activité principale de l'établissement. Afin de renforcer la qualité de toute exploitation, ces variables sont soumises à des redressements sur la base de plusieurs sources. Les fichiers « postes » des DADS (Déclaration Annuelle de Données Sociales) sont gérés par l'Insee.

Le champ retenu dans l'analyse correspond aux établissements disposant d'au moins un salarié du secteur marchand et semi-public. Sont écartés les établissements publics (qui sont identifiés, entre autres, par un numéro SIRET commençant par 1 ou 2), les holdings, les entreprises de services domestiques et les entreprises de travail temporaire.

Notons que les DADS sont une source Entreprise qui recense l'emploi régional selon le lieu de travail (optique poste de travail) tandis que les EE sont une source ménage qui permet de dénombrer l'emploi régional selon le lieu de résidence des salariés. Des différences peuvent apparaître à champs identiques dès lors que le nombre de salariés qui travaillent en lle-de-France mais résident en dehors de la région dépasse celui des salariés franciliens qui travaillent en dehors de la région.

Les deux sources donnent des effectifs comparables à un niveau d'agrégation élevé. Cependant, l'emploi public n'est pas recensé dans les données DADS que nous avons dû compléter par des données issues de l'EE²¹.

Le calcul de l'emploi induit

Nous avons régionalisé l'analyse, en mobilisant des données de production (PROD) par branche pour l'Ile-de-France, en millions d'euros courants (2007). Ces données ont été obtenues à partir de données de valeur ajoutée francilienne agrégée au niveau de 16 postes²². Pour désagréger la valeur ajoutée en 114 postes (niveau le plus fin), nous avons repris la même structure de répartition sectorielle que celle de l'emploi (source : DADS et EE), ce qui signifie que la structure de la valeur agrégée en 114 postes suit les mêmes proportions que l'emploi dans chaque secteur d'activité.

On évalue l'emploi induit de la première année jusqu'à la dixième année.

<u>Hypothèse 3</u>: La productivité (Valeur ajoutée par tête) est supposée identique à l'intérieur de chaque branche.

Pour obtenir les données de production franciliennes, nous avons multiplié les données désagrégées de valeur ajoutée, par les ratios Valeur ajoutée sur Production issus du TEI national (VA (114) * (VA/Production).

²¹ Les effectifs occupés des DADS et de l'EE sont respectivement de 3,116 millions et 3,227 millions jusqu'à la branche P21 (Activités audiovisuelles). Pour les dernières branches, l'EE contient, de fait, beaucoup plus d'effectifs que les DADS (qui ne portent que sur les entreprises privées et ne comprennent pas le secteur public) : les effectifs sont respectivement de 863 500 personnes dans les DADS et de 1 666 357 dans l'EE. Nous avons donc retenu les effectifs DADS jusqu'à la branche P21 et ceux des EE à partir de P2A (activités récréatives et culturelles). Au total, l'emploi francilien ainsi reconstitué est issu à la fois des DADS et des EE, il correspond à un effectif de 5,289 millions de personnes qui est ventilé dans toutes les branches selon une nomenclature en 114 postes.

²² La NES comprend trois niveaux d'agrégation comportant respectivement 16, 36 et 114 postes.

<u>Hypothèse 4</u>: La part des CI dans la production, qui détermine le ratio production sur valeur ajoutée, est supposée être la même en France entière qu'en lle-de-France, pour chacune des 114 branches.

A ce stade, nous avons un TES exprimé en euro au niveau régional.

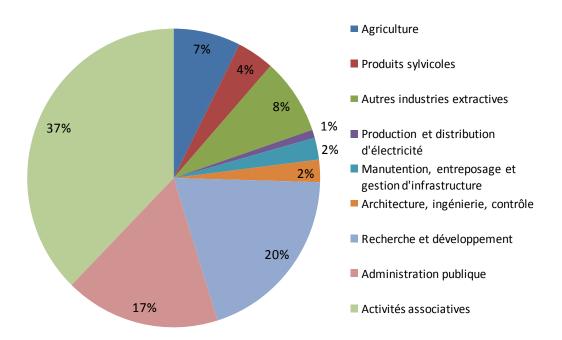
Ces données de production régionale nous permettent de « caler en niveau » nos simulations de politiques économiques. Pour passer des résultats exprimés en Production à des résultats exprimés en emploi, nous calculons le contenu en emploi de chaque euro produit pour chacune des 114 branches, à

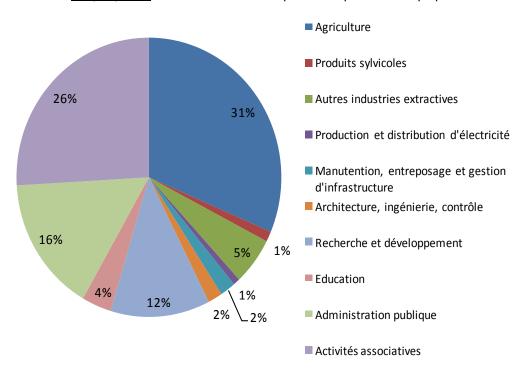
savoir
$$n_i = \frac{N_i}{PROD_i}$$
 où N_i est l'emploi régional par branche et $PROD_i$ la production correspondante.

Le coefficient n_i est considéré comme étant stable au cours de l'année.

Dans la composition du niveau de l'emploi régional N_i nous connaissons grâce aux bio-coefficients la part des emplois favorables à la biodiversité (en EO et en ETP) $N_i^{\ bio}$ (ou bio-emplois) et nous écrivons $N_i = N_i^{\ bio} + N_i^{\ nonbio}$.

Pour dénombrer les bio-emplois induits, nous enlevons l'équivalent en production des bio-emplois et regardons l'impact sur la production induite de l'ensemble des branches puis sur l'emploi induit. La valeur de la production de la branche i $PROD_i$ va s'ajuster au choc, n_i restant constant. Cette variation $\Delta PROD_i$ va provoquer à son tour des variations des productions des autres branches. Les coefficients n_i des autres branches étant stables à court terme, le niveau de l'emploi requis N_i dans chacune d'entre elles se modifiera. La somme de ces ΔN_i représente l'emploi induit par les bio-emplois.


c) Les données sur les bio-emplois en lle-de-France : les résultats


Si l'on se base sur les chiffres du recensement au 1^{er} janvier 2007, soit un total de 5 570 300 emplois en lle-de-France, les bio-emplois représentent actuellement près de 1 emploi sur 1000 en lle de France. Nous recensons près de 5090 bio-emplois en EO et 6400 en ETP dont une large majorité se situe dans les activités associatives (37%) (Association de protection de la nature et du cadre de vie et chantier d'insertion), les activités de recherche et développement (19%) (Enseignement et recherche dans le secondaire) et l'administration publique (17%).

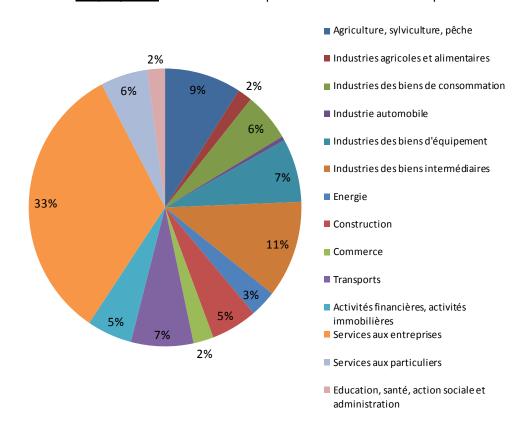
De plus, nous comptabilisons 2355 emplois en EO et 2900 ETP sur l'ensemble de la France induits par les bio-emplois franciliens, soit un total de presque 7450 bio-emplois et emplois induits en EO et 9300 pour une comptabilisation en ETP.

Ainsi, pour deux bio-emplois en lle-de-France, en moyenne, un emploi induit est créé à l'échelle nationale.

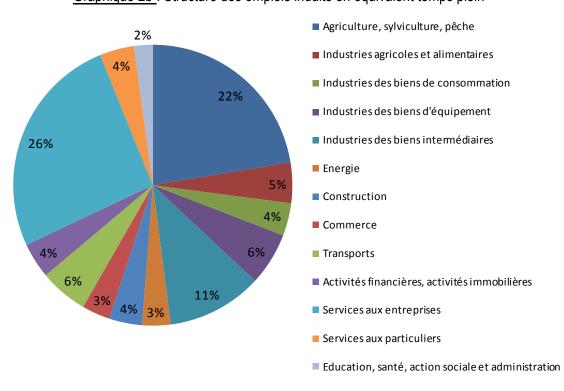
Graphique 1a : Structure des bio-emplois en effectifs occupés

Graphique 1b : Structure des bio-emplois en équivalent temps plein

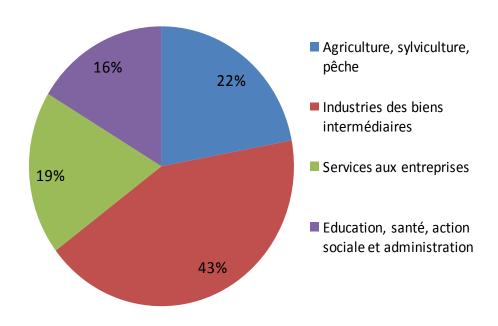
Si l'on regarde de plus près la distribution des bio-emplois, ils sont présents dans le secteur primaire : agriculture et paysage et surtout dans le secteur tertiaire : activités de service. Ces emplois sont concentrés dans un petit nombre de secteurs : plus de 70% des bio-emplois appartiennent à seulement trois secteurs d'activités représentés par trois NES (sur l'ensemble des 20 NES étudiées et liées au choix méthodologique des secteurs présentés dans la partie II,b).

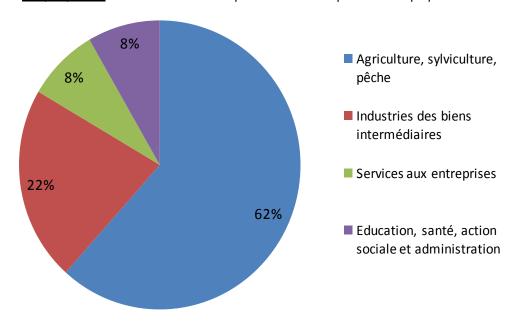

Nos entretiens nous révèlent que le secteur secondaire contient très peu de bio-emplois car les entreprises externalisent les compétences, pour la majorité d'entres elles, et font appel à des prestataires pour réaliser leurs pratiques favorables à la biodiversité (ex : gestion des espaces verts sur leur foncier).

Ainsi, les bio-emplois ne sont pas présents dans beaucoup de secteurs d'activité mais agissent de manière transversale sur l'ensemble du tissu économique du fait de l'externalisation des pratiques. Prenons l'exemple du secteur associatif qui représente plus d'un tiers des bio-emplois franciliens du fait des chantiers d'insertion dans cette NES. Les chantiers d'insertion sont un cas concret de cette action transversale des bio-emplois dans les secteurs primaire, secondaire et tertiaire de notre tissu productif.


La distribution est très différente pour les emplois induits. Contrairement aux bio-emplois, les emplois induits se situent sur un ensemble très hétérogène de secteurs d'activités (cf. graphique 2a-2b). Les emplois induits se trouvent sur les filières de production de l'amont à l'aval de nos bio-emplois. Ils sont bien mieux répartis sur l'ensemble de la structure économique même si le secteur des services aux entreprises (activités de support telles que l'activité informatique, les bureaux d'études et les activités comptables et juridiques par exemple) concentre plus d'un tiers de ces emplois.

A l'inverse, les bio-emplois induits ont une structure très similaire à celle des bio-emplois, ce qui est lié au fait que la structure des bio-coefficients reste inchangée (cf. Graphique 3a-3b).


Graphique 2a : Structure des emplois induits en effectifs occupés


Graphique 2b : Structure des emplois induits en équivalent temps plein

Graphique 3a: Structure des bio-emplois induits en effectifs occupés

Graphique 3b : Structure des bio-emplois induits en équivalent temps plein

Les emplois en Ile-de-France représentent, tous secteurs confondus, un quart des emplois totaux nationaux. On compte environ 5 millions d'emplois en Ile-de-France sur un peu plus de 20 millions d'emplois à l'échelle nationale.

En ce qui concerne les bio-emplois, nous retrouvons quasiment le même ratio entre notre recensement régional et l'estimation nationale, effectué par le comité de filière du ministère en charge de l'écologie. Nous considérons les résultats du comité de filière et non du SOeS du fait d'un périmètre d'étude plus stricte que le notre comme nous l'expliquons dans la revue de littérature. Ainsi, les bio-emplois en lle-de-France représentent 25,45% du total des emplois favorables à la biodiversité en France (cf. revue de littérature et figure 2).

Emplois dans l'environnement en France :
400 000 (1)

Emplois biodiversité en France :
→ Comite filière : 20 000 (2)
→ SOeS : 11 000 (3)

Bio-emplois en Ile-de-France :
5090

Figure 2 : Inscription de nos résultats dans la littérature existante

<u>Sources</u>: (1), (3): Quantification des emplois dans l'environnement et ventilation par secteur via les dépenses en environnement. Etude du SOeS « Les éco-activités et l'emploi environnemental », juillet 2009. (2): Estimation des emplois favorables à la biodiversité. Rapport du Comité de filière « Biodiversité et services écosystémiques », janvier 2010.

Ce recensement apparait satisfaisant au regard des études existantes mais n'apparait pas très satisfaisant au regard de l'ensemble des emplois régionaux et des pratiques en faveur de la biodiversité. Seulement 1 emploi sur 1000 en Ile-de-France est un bio-emploi. Ce chiffre est assez faible comparé aux autres secteurs de la croissance verte. De la même manière, l'étude du SOeS ne comptabilise que 0.2% du total des emplois dans l'environnement pour le secteur « nature, paysage, biodiversité ».

Au vu de nos entretiens, il apparait que la plupart des secteurs d'activités ont assez peu de visibilité concernant l'évolution du nombre de bio-emplois que ce soit en termes de recrutement (création nette d'emplois) ou en termes de formation (conversion vers pratiques favorables à la biodiversité) sur les années à venir. Ainsi, quels sont les leviers, en matière de politiques publiques, qui permettraient d'augmenter le nombre de bio-emplois?

III. <u>Bio-emplois et emplois induits : quelles stratégies pour les politiques publiques ?</u>

a) « SPIDER »: un outil de prospective pour les bio-emplois

L'outil de simulation que nous avons construit, à partir du Tableau Entrées-Sorties de la comptabilité nationale (cf. Partie II), pour dénombrer les emplois dans la biodiversité en Ile-de-France peut être utilisé de façon prospective pour mesurer l'effet de *scénarii* d'évolution des emplois ainsi que pour évaluer les effets de politiques régionales variées. Nous nommons ce dernier : SPIDER. Nous pouvons, par exemple, envisager de chiffrer les effets d'une commande publique ciblée sur un secteur d'activité particulier, évaluer l'impact d'actions de communication ou de formation qui conduiraient à des changements de pratiques professionnelles favorables à la biodiversité, ou encore mesurer les conséquences d'un changement de réglementation visant à mieux préserver la biodiversité.

Les principales caractéristiques de l'outil de simulation sont les suivantes :

- ➢ Il s'agit d'un instrument qui permet de mesurer des effets directs sur la création d'emploi (et de bio-emplois) et sur l'emploi induit (et les bio-emplois induits), avec deux modes de calcul de l'emploi, en effectif occupé et en équivalent temps plein. Les autres variables d'intérêt sont la production et la valeur ajoutée.
- Les simulations sont régionales : la production et l'emploi sont mesurés en lle-de-France, les emplois induits sont mesurés pour la France entière.
- L'analyse est multisectorielle et s'effectue au niveau le plus fin : on distingue 114 secteurs d'activité et on considère l'ensemble des interdépendances productives entre ces secteurs. Les emplois favorables à la biodiversité sont ainsi considérés du point de vue de leurs interactions économiques avec le reste du tissu productif.
- Les simulations sont dynamiques : on calcule les conséquences de n'importe quel type de choc avec un pas annuel et on restitue ces effets année après année avec un horizon de prévision de dix ans.

Pour toutes ces raisons, nous avons baptisé cet outil SPIDER, pour Simulateur Prospectif Inter-sectoriel et Dynamique pour l'Emploi Régional. Une grande variété de politiques publiques peut être simulée par SPIDER.

b) Les simulations des politiques publiques

Notre objectif est de comprendre comment optimiser la mise en place de politiques publiques à double dividende. Pour discuter les effets de différentes politiques publiques, il est en effet intéressant de distinguer deux types d'objectifs : l'impact sur la biodiversité, que nous pouvons approcher avec le volume des bio-emplois, et l'impact sur l'emploi, que nous mesurons directement. La question est donc de savoir quelle politique est la mieux adaptée pour augmenter le nombre de bio-emplois (directs et indirects) tout en prenant en compte les effets sur l'emploi en général.

Afin de répondre à cette question, nous nous sommes fixés de manière arbitraire un objectif de 20% de bio-emplois supplémentaires²³, soit une augmentation d'environ 1000 bio-emplois en effectifs occupés. L'objectif étant déterminé, nous nous interrogeons sur le meilleur moyen de l'atteindre en considérant à la fois le coût budgétaire de la politique régionale et les effets induits sur l'emploi total. Nous privilégions évidemment des politiques peu coûteuses avec de larges effets sur l'emploi induit.

De façon synthétique, on peut distinguer deux grands types de politiques publiques régionales. Soit on agit du côté de la demande de biens et services (par exemple au travers d'une commande publique) soit on modifie les conditions de l'offre (par exemple avec une nouvelle réglementation qui modifie les manières de produire). Ces actions peuvent être ponctuelles ou répétées, symétriques ou asymétriques (au sens où ils affectent ou non de la même manière l'ensemble des secteurs d'activité) et, si elles sont

²³ Les effets sur le chômage peuvent varier en fonction de la politique et du choc réalisé. Ainsi, nous détaillons l'effet sur le chômage et donc la création nette d'emplois pour chaque variante.

asymétriques, elles peuvent être mises en place à différents niveaux de ciblage (sur un seul secteur ou sur plusieurs). Une question essentielle pour les politiques régionales est de déterminer la bonne combinaison des actions d'offre et de demande et le degré de ciblage optimal des politiques publiques. Avec les mêmes moyens budgétaires, on peut agir fortement sur un petit nombre de secteurs d'activité ou au contraire agir de façon moins significative mais sur un ensemble élargi d'activités productives. Quelle est la meilleure des politiques ?

Compte tenu du très large spectre des possibilités, nous allons procéder en deux temps. Tout d'abord, nous allons étudier les effets sur les bio-emplois de politiques de demande, c'est-à-dire de mesures qui vont introduire des **changements dans le niveau de production** des différents secteurs d'activité. Une commande publique de la Région ou une aide fiscale ou tarifaire à la consommation de tel ou tel produit entre par exemple dans cette catégorie. Ensuite, nous allons étudier les effets de politiques d'offre qui reposent sur un **changement des pratiques professionnelles** dans un ou plusieurs secteurs d'activité. Ces politiques du coté de l'offre visent à faire basculer les pratiques en faveur de la biodiversité, par une subvention conditionnée ou une mesure réglementaire par exemple. Techniquement, ce type de politique se traduit par un changement dans les bio-coefficients (i.e. le pourcentage du temps de travail passé en faveur de la biodiversité, dans un secteur d'activité).

En considérant ces deux ensembles de politiques, nous sommes en mesure de réaliser trois types de simulations. Les variantes de type I consistent en un choc sur le niveau de la production. Les variantes de type II relèvent d'un changement dans les pratiques et les variantes de type III sont des politiques mixtes combinent les variantes I et II.

Les simulations qui sont présentées dans ce rapport sont réalisées à partir des seules données en Effectifs Occupés, les résultats et conclusions sont qualitativement identiques pour les Equivalents Temps Plein.

Variantes de type I – Agir sur les niveaux de production

Afin d'étudier les effets d'un ciblage plus ou moins étroit des politiques de demandes, nous avons tout d'abord réalisé un ensemble de chocs de production symétriques (qui augmentent de façon uniforme les niveaux de production des différents secteurs concernés) avec des degrés de ciblage différents : ensemble des secteurs (114 secteurs), 16 secteurs (secteurs avec un bio-coefficient positif), 5 secteurs (secteurs avec un bio-coefficient supérieur à 0.01- secteurs avec les bio-coefficients les plus élevés) et 1 secteur à la fois. Pour chaque choc, nous mesurons « à l'envers » l'ampleur du choc qui permet de réaliser l'objectif d'une hausse de 20% de bio-emplois supplémentaires (i.e. créer environ 1000 bio-emplois en effectifs occupés).

A la lecture du tableau 2a, qui présente les résultats de cette première simulation, il apparaît clairement qu'une politique de demande ciblée semble préférable à une politique diluée. Du strict point de vue de la protection de la biodiversité, il paraît peu utile de soutenir l'activité des branches à faible contenu en bio-emplois et *a fortiori* celles dont les bio-coefficients sont nuls. Il est préférable d'augmenter la production de 26% dans 5 secteurs que de 20% dans 16 ou 114 secteurs en termes d'efficience (ou d'allocation de ressources)

<u>Tableau 2a :</u> Résultats d'un choc sur la production pour différents degrés de ciblage, pour créer 1 000 bio-emplois en Ile-de-France

Ciblage	114 secteurs	16 secteurs	5 secteurs				
Augmentation de la production (en points de %)	20 (= 19.89)	20 (= 19.89)	26 (= 25.94)				

Pour autant, il importe de ne pas aller trop loin dans le ciblage de cette éventuelle politique de demande. Dans le tableau 2b, nous simulons les effets d'un choc sur le niveau de production qui fait porter tout l'effort sur un seul secteur. La hausse de la production est à chaque fois considérable et s'élève jusqu'à plus de 400 points de pourcentage. Les variations sont toutes très importantes, voire démesurées, même pour le secteur associatif, qui avec la plus petite variation, doit augmenter sa production de plus de moitié, pour créer 1 000 bio-emplois en lle-de-France²⁴.

<u>Tableau 2b :</u> Résultats d'un choc sur la production en ciblant la politique sur un seul secteur, pour créer 1 000 bio-emplois en Ile-de-France

Code NES	GA01	GA02	GF12	GN4B	GR10	GR20	
Augmentation de la production (en points de %)	270,00	464,00	236,00	102,00	118,00	53,00	

A01 : agriculture, A02 : forêt, F12 : carrier, N4B : recherche, R10 : secteur public, R20 : association

Pour atteindre un objectif donné de progression de l'emploi favorable à la biodiversité, une politique de demande non ciblée, tout comme une politique de demande trop ciblée, est une stratégie excessivement coûteuse en termes d'efficience. Il importe de cibler les politiques de demande sur un petit nombre de branches ayant une part importante de bio-emplois. Il s'agit de *l'effet bio-coefficient**. Mais un ciblage excessif conduit à une hausse de la production qui parait peu réaliste. Il s'agit là d'un effet taille*. Un compromis efficace revient à cibler les 5 secteurs à plus fort bio-coefficients, de façon à agir sur un volume suffisant d'activité pour atteindre l'objectif fixé.

Variantes de type II – Changer les pratiques

Notre deuxième ensemble de simulations explore les politiques d'offre qui consistent à augmenter la part du temps favorable à la biodiversité à niveau de production donné. Le changement de pratiques est exprimé en variation de points de pourcentage du bio-coefficient sans que nous ayons les moyens d'apprécier le coût de la politique. Nous avons chiffré les effets d'une action sur les bio-coefficients qui permettrait d'obtenir l'objectif donné de 20 % de hausse des bio-emplois en Ile-de-France.

24 Il est possible de mesurer la production des associations selon leur type d'activité (formation, recherche, enquête de terrain, gestion d'espaces verts, etc.). Il est aussi possible d'évaluer leur production (non marchande) par la méthode du coût des facteurs de production (essentiellement le travail). Quant à la recherche, la variation des valeurs des contrats de recherche peut révéler la variation de sa production.

Le tableau 3a présente les premiers résultats. On constate que l'effort sur les bio-coefficients est le moins élevé lorsque l'on cible un ensemble large de 16 secteurs. L'augmentation du bio-coefficient nécessaire pour augmenter de 20% les bio-emplois en lle-de-France est deux fois plus importante pour 6 secteurs et 10 fois plus importante pour 5 secteurs.

<u>Tableau 3a :</u> Résultats d'un changement de pratiques pour différents degrés de ciblage, pour augmenter les bio-emplois de 20% en Ile-de-France

Ciblage	16 secteurs	6 secteurs ²⁵	5 secteurs
Augmentation du bio-coefficient (en points de %)	0.08	0.16	0.90

Agir sur une seule branche conduit à des hausses du bio-coefficient qui sont parfois excessivement élevées (tableau 3b), notamment dans la forêt ou les carrières, ce qui traduit simplement un effet taille des branches. Quitte à changer les pratiques en faveur d'une part d'emploi favorable à la biodiversité plus importante, autant le faire dans des secteurs de grande taille, comme le secteur public ou les associations.

En d'autres mots, pour un objectif de 20% de bio-emplois supplémentaires en Ile-de-France, un effort de changement de pratiques de 0.2 point de pourcentage (cf. Tableau 3b) est nécessaire pour le secteur public. Le même objectif est obtenu par le secteur forestier par une augmentation de 73,7 points de pourcentage du temps de travail en faveur de la biodiversité.

<u>Tableau 3b</u>: Résultats d'un changement de pratiques en ciblant la politique sur un secteur, pour augmenter les bio-emplois de 20% (1 000 emplois) en lle-de-France

Code NES	GA01	GA02	GF12	GN4B	GR10	GR20
Augmentation du bio-coefficient (en points de %)	5,3	73,7	65,1	5,9	0,2	1,4

A01 : agriculture, A02 : forêt, F12 : carrier, N4B : recherche, R10 : secteur public, R20 : association

Une bonne illustration de l'effet taille est donnée dans le cas d'un changement uniforme des bio-coefficients. Si l'on cible les 16 secteurs à bio-coefficients non nul, une hausse uniforme des bio-coefficients nécessaire pour créer 1000 emplois, va se traduire par la création de plus de 430 emplois publics mais par seulement un seul emploi créé dans la forêt et un seul dans les carrières (tableau 4a). Pour augmenter les bio-emplois de 20%, lorsque l'on met en place une politique d'offre sur 16 secteurs, plus de la moitié des bio-emplois sont ainsi créés dans les secteurs du bâtiment et du public.

<u>Tableau 4a</u>: Répartition des bio- emplois pour un ciblage du changement de pratique sur 16 secteurs, pour augmenter les bio-emplois de 20% (1 000 emplois) en Ile-de-France

Code NES Bio-emploi	<i>GA01</i> 15	<i>GA02</i>	<i>GF12</i>	<i>GG2A</i> 19	<i>GG2B</i> 9	GG22 7

²⁵ L'intitulé « 6 secteurs » comprend les 5 secteurs à plus forts bio-coefficients et le secteur public.

-

Code NES	GH01	GH02	GK01	GK07	GN23	GN25
Bio-emploi	155	37	34	30	89	83
Code NES	GN34	GN4B	GR10	GR20		
Bio-emploi	20	14	437	62		

A01 : agriculture, A02 : forêt, F12 : carrier, G2A : production et distribution d'électricité, G2B : production et distribution de combustibles, G22 : captage, traitement et distribution d'eau, H01 : Bâtiment , H02 : Travaux publics, K01 : Transports ferroviaires, K07 : Manutention, entreposage, gestion d'infrastructures, L03 : Auxiliaires financiers et d'assurance, N23 : Administration d'entreprises, N25 : Architecture, ingénierie, contrôle, N34 : Assainissement, voirie, gestion des déchets, N4B : recherche, R10 : secteur public, R20 : association

Si le ciblage est plus étroit, sur 5 ou 6 secteurs, une hausse uniforme des bio-coefficients nécessaire pour créer 1000 emplois, va se traduire également par une disproportion importante du volume d'emplois créés selon les secteurs. Le tableau 4b l'illustre en témoignant à nouveau du poids du secteur public et du secteur associatif (principalement des chantiers d'insertion) dans la création de bio-emplois.

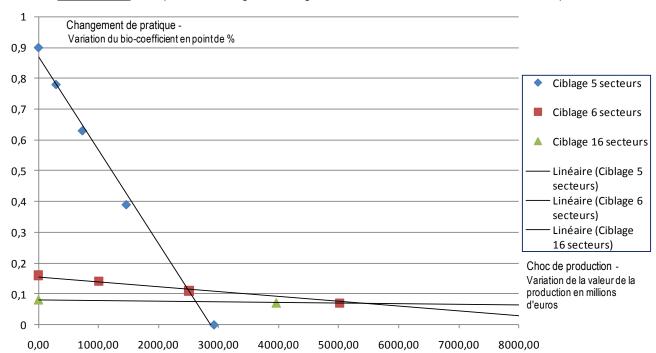
Tableau 4b : Répartition des bio-emplois pour un ciblage du changement de pratique sur 5 et 6 secteurs

Code NES Répartition des bio-emplois	GA01	GA02	GF12	GN4B	GR10	GR20
Ciblage à 6 secteurs	30	2	2	27	837	119
Ciblage à 5 secteurs	167	9	13	153	Hors ciblage	670

A01 : agriculture, A02 : forêt, F12 : carrier, N4B : recherche, R20 : association, R10 : secteur public

Lorsque l'on prend les secteurs individuellement, il est toujours plus efficace qu'une politique d'offre cible les secteurs les plus importants en termes d'effectifs (cf. Tableau 3b). Une branche de grande taille limite la variation du bio-coefficient nécessaire pour obtenir un effet donné sur l'emploi. Si l'on veut minimiser l'effort lié à un changement de bio-coefficient, il est évidemment toujours préférable de mener la politique d'offre sur le plus grand nombre de secteurs possible (cf. Tableau 3a). C'est l'effet taille ou effectif.

Variantes de type III – Combiner les actions sur l'offre et sur la demande


Une politique de demande est excessivement coûteuse si elle n'est pas bien ciblée, alors qu'une politique d'offre gagne au contraire à être étendue. La première crée de l'emploi mais à un coût élevé alors que la seconde n'a pas d'effet particulièrement positif sur l'emploi dès lors qu'elle laisse inchangé le niveau de production. Cela indique qu'il peut être intéressant de réaliser une politique mixte.

Nous fixons toujours l'objectif de 20% de bio-emplois supplémentaires mais nous tentons de mesurer l'effet de l'association des deux types d'instruments de politiques publiques. Pour le représenter, on se donne un objectif donné de bio-emplois, par exemple, 20 % de hausse, et on cherche les combinaisons de hausse de la production et de hausse des bio-coefficients qui permettent d'y parvenir, pour un degré de ciblage donné (par exemple 5 secteurs ou 16 secteurs). Les résultats sont présentés dans un graphique où les abscisses sont le choc (la variation) de production (en euros) et où les ordonnées représentent le choc de pratique, soit un changement dans la part de temps consacrée favorablement à

la biodiversité (en point de pourcentage). Dans ce plan, nous dessinons des courbes d'iso-efficacité issus des simulations numériques (graphique 4).

Encadré 6 : Courbe d'iso-efficacité

Chaque point d'une droite donnée assure l'augmentation de 20% de bio-emplois par la combinaison d'un choc de production et d'une variation du bio-coefficient. La droite représente une infinité de points ayant le même effet.

Graphique 4 : Politique mixte et degré de ciblage : les courbes d'iso-efficacité en effectifs occupés

On remarque que plus l'on cible la politique sur un nombre réduit de secteurs, plus l'effort sur le biocoefficient devra être élevé et moins le choc de production requis sera important pour atteindre un objectif donné de bio-emplois. Inversement, plus la politique vise un grand nombre de secteurs, plus l'effort sur le bio-coefficient est faible et plus le choc de production requis est important. Il existe un lien entre le contenu de la politique (offre ou demande) et le degré de ciblage.

Si l'objectif est de maximiser le volume d'emploi favorable à la biodiversité, la situation préférée est la plus éloignée possible de l'origine dans le graphique 4 (parce qu'elle crée le plus de bio-emplois et emplois induits). Pour en dire davantage sur le degré optimal de ciblage et sur le mix le plus efficace des deux types d'interventions (offre ou demande), il nous manque un élément, qui est la position de la contrainte budgétaire dans ce plan.

Encadré 7 : Définition de la contrainte budgétaire et hypothèses

Le budget public est alloué sous forme de soutien direct à la production ou de subvention au changement de pratique. L'efficacité marginale de la subvention est décroissante. Dans le processus de « verdissement des pratiques », chaque accroissement d'un point de pourcentage des bio-coefficients

sur un (des) secteur(s) génère une dépense supplémentaire plus élevée. On fait ainsi l'hypothèse d'une contrainte budgétaire concave dans le plan du graphique 4.

Si la contrainte budgétaire est bien concave dans un plan variation de la production / hausse du biocoefficient, on peut en déduire plusieurs constats utiles. Tout d'abord, à degré de ciblage donné, la meilleure politique est très probablement une action mixte, qui doit combiner des mesures d'offre et des mesures de demande. Une politique mixte associant un choc sur la production et un changement de pratiques est préférable à une politique s'appuyant sur un seul de ces instruments.

Ensuite, il y a un lien univoque entre le degré de ciblage et le contenu de la politique optimale : si compte tenu de la forme de la contrainte budgétaire, le ciblage optimal est large, sur un grand nombre de secteurs, les mesures d'offre prédomineront dans le mix de politique publique ; en revanche, si le ciblage optimal conduit à n'agir que sur un petit nombre de secteurs, les actions côté demande prédomineront.

Une stratégie dominante consiste alors à choisir un ciblage différent pour les actions d'offre et de demande. Il faut combiner les politiques d'offre et de demande avec un ciblage différent en termes de nombre de secteurs. Le degré de ciblage optimal de la politique mixte doit couvrir tous les secteurs intégrant des bio-emplois (secteurs dont le bio-coefficient est positif), pour les actions du côté de l'offre, et un petit nombre de secteurs à fort bio-coefficient, pour les actions côté demande. La politique la plus efficace combine un choc d'offre peu ciblé, dont l'objectif est d'inciter les pratiques favorables à la biodiversité sur un grand nombre de secteurs, et un choc de demande assez ciblé qui conduit à augmenter la production sur un petit nombre de secteurs.

Nous ne pouvons aller au-delà de ces constats sans avoir évalué la position précise de la contrainte budgétaire régionale, ce qui est en dehors du champ de notre étude.

Conclusions

Les emplois dans la biodiversité sont communément étudiés à travers l'approche des métiers du « cœur vert ». Or, la protection de la biodiversité intervient de manière transversale dans un grand nombre de secteurs d'activité. La région lle-de-France a cette particularité d'accueillir une biodiversité très riche qui cohabite avec une activité économique très importante. Ainsi, des emplois se développent en faveur de la biodiversité dans différents domaines d'activité mais pour lesquels nous avons très peu de visibilité.

L'objet de cette étude était, dans un premier temps, de recenser les emplois en faveur de la biodiversité : les bio-emplois en lle-de-France, ainsi que les emplois induits par ces bio-emplois sur l'ensemble de la France. Ce recensement est réalisé grâce à une enquête monographique auprès de professionnels et d'experts de la question de la protection de la biodiversité pour chaque secteur. Nous avons créé un indicateur qui s'applique à l'ensemble des secteurs d'activité de manière uniforme et qui permet de saisir la part de temps favorable à la biodiversité de chaque emploi : le bio-coefficient.

Les bio-emplois représentent actuellement 1 emploi sur 1000 en lle de France, soient près de 5090 bioemplois en EO et 6400 en ETP dont la majorité se situe dans les activités associatives (37%) (Association de protection de la nature et du cadre de vie et chantier d'insertion), les activités de recherche et développement (19%) (Enseignement et recherche dans le secondaire) et l'administration publique (17%). De plus, nous comptabilisons 2355 emplois en EO et 2900 ETP sur l'ensemble de la France induits par les bio-emplois franciliens, soit un total de presque 7450 bio-emplois et emplois induits en EO et 9300 pour une comptabilisation en ETP. Ainsi, pour deux bio-emplois en Ile-de-France, en moyenne, un emploi induit est créé à l'échelle nationale.

Les emplois en lle-de-France correspondent à un quart des emplois sur la France. En effectuant le même rapport entre nos bio-emplois franciliens et les résultats du comité de filière sur la France on trouve que nos bio-emplois représentent 25,45% (soit un peu plus d'un quart) du total à l'échelle nationale, ce qui conforte nos résultats.

Une fois ce dénombrement effectué, un outil de simulation prospective a permis de préciser les stratégies politiques régionales et/ou nationales à mettre en œuvre afin d'augmenter le nombre de bioemplois et les pratiques favorables à la biodiversité. Ces simulations montrent qu'une politique mixte associant un soutien à la production et un changement de pratiques est préférable à une politique privilégiant une seule de ces directions. Il s'agit de combiner des politiques d'offre et des politiques de demande tout en tenant compte du niveau de ciblage, en termes de nombre de secteurs, de chacune de ces politiques. Une politique d'offre sera d'autant plus efficace qu'elle portera sur un grand nombre de secteurs alors qu'une politique de demande devra privilégier un petit nombre de secteurs à fort biocoefficient.

Nous montrons finalement qu'une stratégie dominante, qui permettrait effectivement d'engranger un double dividende pour l'emploi et la biodiversité, est de cibler différemment les actions sur l'offre et sur la demande. Le ciblage optimal de la politique mixte doit couvrir tous les secteurs intégrant des bioemplois (secteurs dont le bio-coefficient est positif), pour les actions du côté de l'offre (à savoir, changement de pratiques), et un petit nombre de secteurs à fort bio-coefficient (ex : secteur associatif – chantier d'insertion, carrier, agriculture, etc.), pour les actions côté demande (à savoir, variation de la production). La stratégie régionale devrait dès lors consister à peu cibler l'action sur l'offre, afin d'inciter les pratiques favorables à la biodiversité sur un grand nombre de secteurs, tout en ciblant les mesures de demande sur un petit nombre de secteurs, afin de soutenir la production des secteurs les plus intensifs en emplois favorables à la biodiversité.

L'intégration dans notre outil de simulation d'une contrainte budgétaire chiffrée et du coût lié aux changements de pratiques permettrait de déterminer le niveau exact de ciblage ainsi que les secteurs concernés, l'équilibre entre les politiques d'offre et de demande et de chiffrer le coût total de cette stratégie. Ceci peut faire l'objet d'un développement futur de cette étude.

Références bibliographiques

Analyse économique et préservation de la biodiversité, Economie publique (n°16-2005/1) OCDE, 2008

Ademe, Marchés, emplois et enjeu énergétiques des activités liées à l'efficacité énergétique et aux énergies renouvelables : situation 2006-2007 – perspectives 2012, étude réalisée par la société In Numeri, juillet 2008.

Bovenberg A.L. [1997], Environmental Policy, Distortionary Labour Taxation and Employment: Pollution Taxes and the Double Dividend in Carraro C., Siniscalco D., New Directions in the Economic Theory of the Environment, Cambridge University Press, 1997.

Bovenberg A.L., de Mooij R.A. [1994b], Environmental Taxes and Labor-Market Distortions, European Journal of Political Economy, 10, p. 655-683.

CGDD Références, juillet 2009, L'économie de l'environnement en 2007. Rapport de la commission des comptes et de l'économie de l'environnement. Edition 2009

M. Chiroleu-Assouline, *Le double dividende : les approches théoriques.* Revue française d'Economie, 2001, 16, 2, 119-147.

European Union, An Analysis of the EU Organic Sector, juin 2010.

Goulder L.H. [1994], Environmental Taxation and the "Double Dividend": A Reader's Guide, NBER Working Paper, n°4896.

Goulder L.H. [1995], Effects of Carbon Taxes in an Economy with Prior Tax Distortions: An Intertemporal General Equilibrium Analysis, Journal of Environmental Economics and Management, 29, p. 271-297.

M. Husson, Le contenu en emploi de la demande finale, La Revue de l'IRES n°14, hiver 1994.

MEEDDM, Rapport du comité de filière biodiversité et services écosystémiques. Comité national du plan de mobilisation des territoires et des filières sur le développement des métiers de la croissance verte, janvier 2010.

P. Quirion et D. Demailly. -30% de CO2= + 684 000 emplois, étude pour le WWF, CIRED, 2008

P.Quirion, Les conséquences sur l'emploi de la protection de l'environnement : l'apport des études de contenu en emploi, Thèse de Doctorat, Ecole des Mines de Paris, 2009.

P. Quirion. *Impact sur l'emploi de la réduction des émissions de CO2 en Ile-de-France*. Etude pour la Fondation Charles Léopold Mayer et les Verts, janvier 2010.

SOeS, Les éco-activités et l'emploi environnemental - Périmètre de référence - résultats 2004-2007, (Etudes et documents n°10), juillet 2009

Territoires Emploi Environnement Ile-de-France, Filière forêt-bois: métiers, secteurs, formations, juillet 2010

Territoires Emploi Environnement Ile-de-France, Objectifs biodiversité: métiers, secteurs, formations, juillet 2010.

Territoires Emploi Environnement Ile-de-France, Objectif Biodiversité. Emplois, métiers, formation, mai 2010