COMMISSION “ÉNERGIE”

Annexe au rapport d'étape

Rapport du Groupe 1
“Enseignements du passé”
RAPPORT D’ÉTAPE

Groupe 1

LES ENSEIGNEMENTS DU PASSÉ

Michèle PAPPALARDO, présidente du groupe 1
Aude BODIGUEL, rapporteur

Annexe au rapport d’étape du 30 novembre 2006 de la commission Énergie
TABLE DES MATIERES

INTRODUCTION .................................................................................................................. 6

I. PROSPECTIVES ET REALITES ......................................................................................... 9

A. LES PRINCIPAUX EXERCICES DE PROSPECTIVE .......................................................... 9
  1. Rétrospective de quelques prospectives énergétiques au niveau mondial .................. 9
  2. Rétrospective de quelques prospectives énergétiques au niveau national .............. 11
  3. Quelques enseignements des prospectives passées ................................................. 14

B. LA REALITE DES EVOLUTIONS ....................................................................................... 15
  1. La production .............................................................................................................. 15
  2. La consommation ...................................................................................................... 17
     a) Consommation d’énergie primaire ................................................................. 17
     b) Consommation d’énergie finale par secteur .................................................... 19
  3. L’intensité énergétique ............................................................................................. 20
  4. La facture énergétique ............................................................................................. 21

C. LES ENSEIGNEMENTS A TIRER ....................................................................................... 21
  1. Les enseignements portant sur les méthodes de prévisions ...................................... 22
     a) le manque d’imagination ..................................................................................... 22
     b) l’insuffisante attention portée à la demande ....................................................... 22
     c) l’insuffisante prise en compte des évolutions internationales ......................... 23
     d) l’insuffisante attention portée à l’évolution des capacités de production .......... 24
     e) le rôle crucial des hypothèses faites en matière de croissance économique ...... 24
  2. Les enseignements portant sur les résultats ............................................................. 25
     a) l’intensité énergétique est une variable sensible ............................................... 25
     b) … aux évolutions inextricablement conjuguées des prix de l’énergie et des politiques énergétiques ............................................................................................................ 25
     c) la nature très capitaliste de l’industrie de l’énergie explique en partie l’évolution cyclique des prix et la durée des cycles ................................................................. 26

II. EVOLUTION DES TECHNIQUES ET DES COUTS .......................................................... 27

A. EVOLUTION DES TECHNIQUES .................................................................................... 27
  1. L’absence de « vraie » rupture technologique ......................................................... 27
  2. L’offre d’énergie marquée par le développement de l’énergie nucléaire ............... 28
  3. Des progrès importants dans l’efficacité énergétique des équipements compensés par l’augmentation des besoins ......................................................... 29
  4. les enseignements à tirer ......................................................................................... 31
     a) en 30 ans, les composantes de l’offre énergétique ont très sensiblement évolué, mais de manière très différentes selon les pays ......................................................... 31
     b) les progrès de l’efficacité énergétique ne doivent pas conduire à sous-estimer la nécessité d’agir sur la maîtrise des besoins ................................................................. 32

B. L’EVOLUTION DES COUTS DES ENERGIES ............................................................... 33
  1. l’électricité ................................................................................................................. 33
  2. le gaz ........................................................................................................................ 34
  3. le fuel ....................................................................................................................... 35
  4. les carburants ......................................................................................................... 35
  5. les énergies renouvelables ...................................................................................... 36
a) la production électrique d’origine renouvelable ................................................................. 36
b) La production d’énergie thermique d’origine renouvelable ................................................ 40
6. les enseignements à tirer ......................................................................................................... 44

III. ÉVOLUTION DES COMPORTEMENTS ET DES OPINIONS ........................................ 46

A. L’ÉVOLUTION DES OPINIONS ......................................................................................... 46
1. quelques résultats des sondages d’opinion ............................................................................ 46
2. les enseignements à tirer ........................................................................................................ 47
   a) tenir compte de l’évolution des opinions pour organiser les actions de communication. ......................................................................................................................... 47
   b) développer toutes les formes de mise à disposition d’informations sur l’énergie. ............. 48

B. L’ÉVOLUTION DES COMPORTEMENTS ........................................................................ 48
1. les évolutions de long terme liées au mode de vie ............................................................... 48
2. les changements de comportements sous contraintes ....................................................... 49
3. les motivations des changements ....................................................................................... 49
4. les enseignements à tirer ....................................................................................................... 49
   a) une connaissance insuffisante des mécanismes d’évolution des comportements à court/moyen/long terme ............................................................................................... 49
   b) l’évolution à moyen/long terme des comportements peut profondément modifier les besoins énergétiques et réciproquement ..................................................................... 49
   c) la variété des déterminants des changements de comportements doit être prise en compte dans les politiques énergétiques ........................................................................... 50
   d) la mise à disposition de l’information sur les consommations énergétiques, facteur indispensable des évolutions de comportements ......................................................... 50
   e) les conditions de réussite des campagnes de communication sur l’énergie ..................... 51
   f) des entraves aux modifications des comportements ........................................................ 52

IV. POLITIQUES PUBLIQUES .................................................................................................. 53

A. LES ACTIONS DE COMMUNICATION, DIMENSION ESSENTIELLE DES POLITIQUES PUBLIQUES .................................................................................................................. 53
1. rapide historique des actions de communication depuis 1974 ............................................. 53
2. les moyens financiers consacrés à ces actions ..................................................................... 55
3. quelques résultats .................................................................................................................. 55

B. LES POLITIQUES DE RÉDUCTION DE LA DEMANDE .................................................. 56
1. après le 1er choc pétrolier .................................................................................................... 56
   a) création d’un dispositif politico-administratif original ....................................................... 56
   b) les actions mises en œuvre.................................................................................................. 57
   c) Les succès et les échecs de cette politique ....................................................................... 59
2. la période du contre-choc pétrolier ..................................................................................... 60
3. le début du 21ème siècle ....................................................................................................... 60
4. Les résultats en matière d’efficacité énergétique ............................................................... 60
5. Les enseignements à tirer ..................................................................................................... 62
   a) la nécessité d’un soutien politique fort ............................................................................. 62
   b) la pérennité des actions .................................................................................................... 62
   c) … menacée par l’évolution du prix de l’énergie ................................................................. 63
   d) … et confortée par la protection de l’environnement ....................................................... 64
   e) la multiplicité des outils qui doit s’adapter à la réduction du rôle de l’État et ne pas négliger les actions de contrôle............................................................... 64
   f) le rôle déterminant du prix de l’énergie .......................................................................... 65
   g) le bâtiment : efficacité et limites de la réglementation .................................................... 66
   h) les transports : efficacité et limites du soutien public .................................................... 67

C. LES POLITIQUES DE DEVELOPPEMENT DE L’OFFRE ENERGETIQUE .................. 69
1. augmentation de l’offre énergétique nationale : le parc nucléaire ....................................... 69
2. diversification des approvisionnements .............................................................................. 70
3. diversification du « mix » énergétique ................................................................. 71
4. l’ouverture des marchés ...................................................................................... 71
5. les enseignements à tirer .................................................................................. 72
   a) l’offre énergétique : une préoccupation insuffisante hors des périodes de crise .......... 72
   b) la libéralisation des marchés, des conséquences encore mal connues, une régulation nécessaire ................................................................................................................. 73
   c) des modes de soutien différents selon les types d’énergie ........................................ 73
   d) … qui nécessitent d’avoir des politiques de filières cohérentes ................................. 74
   e) les politiques industrielles ne doivent pas être limitées aux besoins énergétiques nationaux 74

MEMBRES DU GROUPE .......................................................................................... 75
LISTE DES GRAPHIQUES

Graphique n° 1 : Les trois chocs pétroliers .............................................................. 8
Graphique n° 2 : Evolution de la production d’énergie primaire entre 1973 et 2005 .... 17
Graphique n° 3 : Consommation d’énergie primaire par énergie .......................... 18
Graphique n° 4 : Part des énergies dans la consommation d’énergie primaire (%) ...... 18
Graphique n° 5 : La consommation finale d’énergie par secteur ............................ 20
Graphique n° 6 : Intensité énergétique ..................................................................... 20
Graphique n° 7 : La facture énergétique de la France 1970-2005 .............................. 21
Graphique n° 8 : Part de la production d’électricité d’origine nucléaire 1973-2005 .... 28
Graphique n° 9 : Consommation de carburant et parc des voitures particulières .... 31
Graphique n° 10 : Electricité à usage domestique (prix TTO) .................................... 33
Graphique n° 11 : Electricité à usage industriel (prix HTT) ........................................ 34
Graphique n° 12 : Gaz naturel à usage industriel (prix HTT) ................................. 34
Graphique n° 13 : Gaz naturel à usage domestique (prix TTC) .............................. 35
Graphique n° 14 : Prix au litre des carburants à la pompe ..................................... 36
Graphique n° 15 : Puissance éolienne installée 1990-2003 en Europe et dans le monde 37
Graphique n° 16 : Puissance éolienne installée en Europe fin 2005 .......................... 38
Graphique n° 17 : World Photovoltaic Shipments 1971-2003 .................................. 39
Graphique n° 18 : Production de cellules photovoltaïques ..................................... 40
Graphique n° 19 : Évolution des coûts d’investissement entre 1990 et 2002 ............ 41
Graphique n° 21 : Intensité énergétique .................................................................... 61
Graphique n° 22 : Exemple de bilan énergétique entre route et transport combiné .... 68
Graphique n° 23 : Indépendance énergétique ............................................................ 70
Graphique n° 24 : Importation de gaz naturel par pays d’origine .............................. 71

LISTE DES TABLEAUX

Tableau n° 1 : Comparatif des exercices de prospective ........................................ 9
Tableau n° 2 : Le scénario D confronté à la réalité .................................................... 11
Tableau n° 3 : Part des énergies dans la consommation finale de 1973 à 2005 ............ 19
Tableau n° 4 : Consommations moyennes pour l’ensemble des voitures particulières ... 29
Tableau n° 5 : Distance totale parcourue ................................................................. 30
Tableau n° 6 : Taux de subvention nécessaire en fonction du type de combustible bois 42
Tableau n° 7 : Production de chaleur ......................................................................... 43
Tableau n° 8 : Budget des actions de communication en millions euros constants ..... 55
Tableau n° 9 : Évolution des moyens de l’agence dans le domaine de l’énergie ......... 57
Tableau n° 10 : Évolution de l’intensité énergétique en France (deux périodes) ........ 61

REFERENCES

L’énergie en France – repères. MINEFI - édition 2006
Evaluation des politiques publiques en faveur du transport combiné rail-route, Conseil National de l’Évaluation – Commissariat Général de Plan, la Documentation Française, novembre 2003
Guide Chaufferies bois pour le séchage des sciages, CTBA, ADEME , 2002
Introduction

L’objectif de ce rapport est de présenter de manière synthétique les grandes évolutions de ces dernières 40 dernières années dans le domaine de la production et de la consommation énergétiques françaises, replacées dans leur environnement européen et mondial, et surtout d’en tirer les enseignements qui pourront être utiles aux travaux des autres groupes de travail du CAS consacrés à l’énergie.


Comparaisons entre le choc de 1974 et aujourd’hui :

Il est fréquent d’entendre les observateurs s’étonner du fait que la forte augmentation du prix du pétrole que nous connaissons aujourd’hui n’entraîne pas les mêmes conséquences tant dans les réactions de l’opinion publique que dans les politiques menées. Il est donc intéressant de procéder à une rapide comparaison des deux situations pour essayer de comprendre ces différences.

Rappel de la situation 1974/1979 :

Le 6 octobre 1973, l’Egypte et la Syrie attaquent Israël le jour du Kippour. Le 16 octobre, le baril de pétrole passe de 2,6 à 5,2 dollars. Le 22 décembre, les États du Golfe doublent son prix qui passe à 11,6 dollars. Le premier choc pétrolier entraîne donc, en quelques semaines, le quadruplement du prix des hydrocarbures dans une France qui importe à l’époque 73% de l’énergie nécessaire à son développement.

Cette crise n’a pas été prévue.

Elle conduit le gouvernement à lancer une nouvelle politique énergétique ayant pour objectif :

1. d’économiser l’énergie
2. de développer la production d’énergies nationales principalement avec le programme électronucléaire
3. de diversifier les approvisionnements extérieurs


Situation actuelle

La « crise » actuelle qui a débuté, de manière visible, par l’augmentation du prix du baril en 2004, malgré quelques similitudes, présente de grandes différences avec le premier choc pétrolier. Certaines, elle n’avait pas non plus été prévue par les observateurs même si elle n’est pas intervenue à la suite d’une crise internationale majeure telle que la guerre de 1973, mais la rapidité et l’ampleur des évolutions sont fort différentes.

1 : chiffres en dollars courants à compléter avec la valeur en dollars de 2006
2 : dans le même temps, le cours du $ passait de 5,5F à 11F

En 1974, puis en 1979, les deux premiers chocs pétroliers ont également eu des répercussions d’une ampleur équivalente sur les prix du gaz importé dans le cadre des contrats "take-or-pay" de GDF, en provenance des Pays-Bas et d’Algérie. Les conséquences sur les consommateurs de gaz ont été cependant amorties par une politique de lissage des tarifs administrés. Cette politique a été facilitée par une intervention visant à modérer les hausses des tarifs de vente du gaz de Lacq par la Compagnie Française du Méthane et la Société Nationale des Gaz du Sud-Ouest aux distributions publiques de GDF et aux Régies municipales, dans leurs zones de desservies couvrant la moitié Sud de la France.

Cette politique ne peut plus être considérée aujourd'hui, dans la mesure où la production nationale de gaz ne représente plus que 1 à 2% de la consommation française.

De façon générale, la part de l’énergie dans le budget des ménages s’est réduite compte tenu notamment de l’augmentation générale du pouvoir d’achat, de la réduction des prix de l’énergie depuis les années 70 et de l’amélioration de l’efficacité des convertisseurs (chaudières, automobiles, …). Cette part est ainsi passée de 8% en 1985 à 5% en 2002, pour remonter légèrement à près de 6% aujourd’hui.

Même si les conséquences sont fortes sur la balance des paiements, l’importance de ces évolutions est due à la monnaie unique et forte, face à un dollar affaibli, sans risque de dévaluation de la monnaie nationale.

1. Sur le graphique n°1, les prix sont des prix annuels moyens c’est pourquoi le pic semble être atteint en 1981 et non en 1984.
Pour toutes ces raisons, la crise actuelle n’est pas vécue comme un véritable traumatisme à la différence de ce que l’on a connu avec les deux premiers chocs pétroliers. Ces différences expliquent aussi pourquoi les réactions des décideurs politiques et des acteurs économiques sont plus lentes et progressives.
I. **Prospectives et réalités**

A. **Les principaux exercices de prospective**

1. **Rétrospective de quelques prospectives énergétiques au niveau mondial**


**L’année 2000 vue des années cinquante : il n’y aura plus de pétrole dans 30 ans.**


**Tableau n° 1 : Comparatif des exercices de prospective**

<table>
<thead>
<tr>
<th></th>
<th>Consommation anticipée (Mtep)</th>
<th>Différences d’avec les résultats 1975 (%)</th>
<th>Différences d’avec les résultats 2000 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1975</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Putnam</td>
<td>4,3</td>
<td>11,0</td>
<td>-18</td>
</tr>
<tr>
<td>Robinson-Daniel</td>
<td>3,4</td>
<td>6,3</td>
<td>35</td>
</tr>
<tr>
<td>Mason</td>
<td>4,4</td>
<td>9,2 à 11,7</td>
<td>-17</td>
</tr>
<tr>
<td>Nations Unies</td>
<td>4,7</td>
<td>12,9</td>
<td>-11</td>
</tr>
</tbody>
</table>

Sources non commerciales exclues.

L’appréciation des écarts entre les exercices doit tenir compte des objectifs recherchés (consommation minimale pour Robinson et Daniel, maximale pour Putnam). Le passage des trajectoires anticipées au dessous de l’évolution effective de la consommation primaire en 1975 et au dessus en 2000 est en grande partie liée à la forte baisse des rythmes de croissance du milieu des années soixante-dix. Mais tous les exercices sont aussi pénalisés par une sous-estimation de la croissance démographique et de la croissance économique, surtout au cours de la première sous période. En règle générale, la relation développement-besoins énergétiques est traitée de façon très sommaire en supposant que « the laggards try to catch the leaders », les
Commission ENERGIE – Groupe 1 « Enseignements du passé » 30 novembre 2006

Prospectives et réalités

le système avait une horloge, un déterminisme. Parmi eux, l’inéluctable déclin de la part du charbon dans le bilan énergétique mondial jusqu’à sa disparition totale en 2050. Le pétrole arrivant aussi à son point de retournement suivi par celui du gaz quelques décennies plus tard, la relève ne pouvait être assurée que par le nucléaire (fission) puis le solaire et la fusion (SOLFUS). Avec un modèle qui marche bien, inutile de regarder autour de soi et de tenir compte de la croissance de la production charbonnière sur tous les continents. Pourquoi un tel aveuglement ? Michel Grenon évoque la « gêne » que représentait la croissance du charbon pour les chercheurs accrus à la relève du nucléaire. Parmi ces derniers, C. Marchetti (principal concepteur du modèle) répondait que les substitutions interénergétiques étaient commandées par une « loi », que « laws work or don’t work » (les lois marchent ou ne marchent pas) et que celle-là marchait.

Au même moment, le World Coal Study (WOCOL) défendait un point de vue opposé à celui de l’IIASA d’avant sa conversion au charbon. Cet atelier était chargé de donner la solution du problème qui avait été posé deux ans plus tôt par un autre atelier, le Workshop on Alternative Energy Strategies (WAES) déjà piloté par le professeur Caroll Wilson du MIT. Ce dernier réservait en 1977 les conclusions du groupe d’experts internationaux qu’il avait réunis ; le monde va manquer de pétrole beaucoup plus tôt que la plupart des gens ne l’imaginent ; la demande dans les pays non communistes (WOCA) dépassera vraisemblablement l’offre entre 1985 et 1995, mais peut-être dès 1983 si les pays de l’OPEP maintiennent leur plafond de production (33 Mbj) parce que les ressources en terre ont plus de valeur que sur le marché ; il nous reste peu de temps pour sauver notre mode de vie occidental. Pourquoi ces conclusions ont-elles été démenties par les évolutions énergétiques des deux décennies suivantes ? Le
WAES a-t-il été trop bien entendu ou a-t-il construit des scénarios énergétiques sur des hypothèses erronées ?

La comparaison du scénario D, le moins éloigné de ce qu’a été la croissance économique du WOCA, avec la consommation effective du même ensemble de pays en 1985 permet de répondre.

Tableau n° 2 : Le scénario D confronté à la réalité

<table>
<thead>
<tr>
<th>1972 (année de référence)</th>
<th>Scénario D</th>
<th>Résultats effectifs</th>
<th>Différences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charbon</td>
<td>725</td>
<td>970</td>
<td>+106</td>
</tr>
<tr>
<td>Pétrole</td>
<td>2.205</td>
<td>2.920</td>
<td>-770</td>
</tr>
<tr>
<td>Gaz naturel</td>
<td>755</td>
<td>920</td>
<td>-10</td>
</tr>
<tr>
<td>Nucléaire</td>
<td>35</td>
<td>505</td>
<td>-215</td>
</tr>
<tr>
<td>Hydro-géothermie</td>
<td>2.90</td>
<td>385</td>
<td>+12</td>
</tr>
<tr>
<td>Total</td>
<td>4.010</td>
<td>5.700</td>
<td>-877</td>
</tr>
</tbody>
</table>

Le retour de l’abondance pétrolière en 1985 n’est pas imputable à la croissance des autres sources d’énergie (même si la consommation de charbon a cru un peu plus vite que ne l’imaginait le scénario) mais à deux évolutions que le WAES a été incapable d’anticiper.


La seconde évolution a trait aux rapports des producteurs OPEP/NOPEP. Pris dans le ciseau d’une demande en diminution et d’une offre NOPEP en croissance, parce que stimulée par les politiques de sécurité des pays importateurs et les stratégies de reconstitution de leur patrimoine des multinationales pétrolières, les pays de l’OPEP n’ont pu maintenir leur production. Les déficits apparaissant dans les scénarios du WAES se sont mués en excédent. Ce manque de lucidité étonne d’autant plus que les grandes compagnies pétrolières étaient bien représentées dans toutes les réunions. Leurs experts étaient-ils tenus à la discrétion où ignoraient-ils encore en 1976 les changements technologiques et géopolitiques qui se préparaient ? Eux seuls pourraient répondre à la question.

2. Rétrospective de quelques prospectives énergétiques au niveau national


Dans le domaine électrique comme dans les autres, les prévisions effectuées par EDF ou le CEA s’avèreront à posteriori élevées. Cet écart s’explique, pour une part, par une mauvaise estimation de l’intensité électrique de l’économie.

Sur la base de ces prévisions, lorsque le programme nucléaire français fut mis en place pour réduire la dépendance énergétique et le déficit de la balance des paiements, on décida de construire les centrales à un rythme soutenu, jusqu’à dépasser sensiblement la demande nationale. La stratégie était celle du « tout électrique, tout nucléaire » ; l’électricité devait pénétrer tous les domaines possibles ; le développement du chauffage électrique direct des locaux en a été une conséquence particulièrement importante.

**La vision d’une France « tout électrique – tout nucléaire »**

Le concept, lancé par EDF, a connu ses heures de gloire à l’occasion du 1er choc pétrolier et du lancement de programmes nucléaires très importants. Lors de sa constitution en 1982, dans le cadre de la préparation du 9ème Plan, le Groupe Long Terme Energie (GTLE) avait été chargé d’organiser une concertation débouchant sur un ralentissement des rythmes d’engagement des centrales nucléaires, compte tenu de la divergence croissante entre la production programmée du parc électrique en 1990 (415-450 TWh) et la consommation domestique attendue (320-350 TWh). Poursuivre le programme à son rythme initial débouchait sur des surcapacités que l’on n’imaginait pas encore limiter par des exportations d’électricité ; l’interrompre mettait en péril la survie de l’industrie électronucléaire conçue pour construire 5 à 7 réacteurs annuellement.

Dans son ouvrage « Haute tension », Marcel Boiteux a exposé sans ambages comment avait été décidé par Pierre Mesmer, alors premier ministre, le nombre d’engagements annuels. Pour arbitraire qu’elle puisse paraître, cette décision reposait en fait sur des prévisions de consommation d’EDF qui la justifiaient. Les représentations externes de ces prévisions sont explicitées dans un colloque de la DATAR (1968), un rapport du Commissariat au Plan (1972) et un article de la Revue Française de l’Energie (1972).

Le premier des trois textes construit une image de la France en 2020 : 80 millions d’habitants, dont 65 urbanisés ; un niveau de vie comparable à celui des Etats-Unis en 2000 ; un PIB 8 à 10 fois supérieur à celui de 1968 ; des besoins en énergie utile 10 à 12 fois supérieurs ; une consommation d’énergie primaire de 1,3 milliard de tep. Les deux autres décroissent l’année 2000. La consommation primaire y atteint 500 Mtep, soit un infiléchissement à la baisse par rapport à l’extrapolation du passé qui aurait conduit à 666 ou 766 Mtep, selon le choix de la période de référence, inflexion imputable après 1985 à des effets de saturation, une tertiarisation plus avancée et peut-être une moindre croissance économique. Avec une consommation par tête de 6,6 tep, la France ne rejoindra pas les Etats-Unis mais elle s’en rapprochera. Comment cette consommation sera-t-elle satisfaite ? « La croissance de la demande d’énergie va obligatoirement exiger que l’on aille vers le nucléaire, et donc vers

⁴ Plan 1964, 1970, 1975 : prévisions = 5%, 6%, 5,5% - réalisations ~3%
l’électricité, ce qui obligera l’électricité à envahir un marché des usages thermiques que, jusque ici, elle occupe peu ». Pourquoi cette évolution ? Parce que le nucléaire seul peut remplacer les fossiles en voie d’épuisement ; parce qu’il est désormais compétitif ; parce que de même que le pétrole (liquide) l’a emporté sur le charbon (solaire), le nucléaire l’emportera sur les fossiles grâce au haut degré de concentration énergétique des combustibles fissiles. Cette perspective implique une production d’électricité de 1 000 TWh, dont 850 de nucléaire, en 2000, soit la variante la plus élevée des trois (580, 750 et 850) proposées par le Plan en décembre 1972. En fin de siècle, le nucléaire pourrait fournir 50% de la consommation totale d’énergie. Ultérieurement, un partage nucléaire (75%) hydrogène (25%) assurerait un approvisionnement idéal. La conséquence de ces perspectives a été un surdimensionnement du parc nucléaire qu’on pouvait estimer à une douzaine de tranches dans la décennie 80.

Après 1976, l’horizon 2000 se brouille de plus en plus. Le rapport du 7ème Plan évoque « un halo d’incertitude », à l’exception de la montée en puissance de l’électricité nucléaire dont la contribution au bilan primaire s’apprécie cependant dans une fourchette ne dépassant pas 36%.

Au total, dix années (1965-75) de représentation du futur énergétique de la France construite sur trois certitudes :
- une trajectoire de consommation d’énergie dont la forte pente est justifiée par l’extrapolation du passé et la transposition à la France du niveau de consommation et de l’évolution des États-Unis, laquelle apporte la preuve de l’inanité de possibles saturations ;
- une inévitable substitution du nucléaire aux sources d’énergie fossiles dont l’exploitation est entrée dans une phase de coûts croissants ;
- pour ce faire, une nécessaire pénétration de l’électricité sur le marché des usages thermiques où elle pourra prendre la place des combustibles.

Une analyse factuelle des prévisions de consommation d’électricité

Les points suivants sont repris d’une analyse d’EDF sur les prévisions de consommation d’électricité effectuées par l’entreprise depuis 1980, c’est-à-dire après les effets constatés des chocs pétroliers.

- Les prévisions de 1980 pour 1990 étaient surestimées de 21%, ce qui s’explique principalement par la surestimation de la croissance du PIB et de la vitesse de pénétration de certains usages. Cette erreur a été corrigée dès 1983.
- A partir de là, les prévisions se vérifient assez bien : la consommation constatée en 2005 est certes dans la moitié basse des fourchettes de prévision de 1985 et 1990, mais toujours à l’intérieur de celle-ci.
- Les erreurs d’appréciation de 1985 sont surtout liées au fait qu’on n’avait pas anticipé le contre-choc pétrolier et ses conséquences sur les marchés de l’énergie.
- Si l’intensité énergétique de l’économie a décru, en revanche la consommation d’électricité a cru plus vite que le PIB. On peut penser qu’elle va croître moins vite. Mais on a du mal à anticiper son évolution secteur par secteur.
- La surestimation des consommations n’est pas la seule raison du surdimensionnement initial du parc nucléaire par rapport à la demande française : s’y ajoutent les bonnes surprises sur la disponibilité des centrales et
le fait qu’au démarrage, le sous-dimensionnement était perçu comme bien plus grave.

3. Quelques enseignements des prospectives passées.

Les résultats pour le moins mitigés des prospectives évoquées ci-dessus ont justifié les nouvelles approches de l’exploration du futur qui ont été développées au cours des années quatre-vingt-dix. Les changements que l’on a opéré, ou tenté d’opérer, découlent de la nouveauté du contexte énergétique (incertitudes accrues, notamment) mais aussi des limites des expériences antérieures d’exploration du futur.

La première de ces limites était l’idée que l’on pouvait faire partager, voire imposer, une image simple et unique du futur (le nucléaire remplaçant le charbon, l’électricité devenant le seul vecteur énergétique, le charbon sucesseur désigné du pétrole). L’évolution énergétique s’est toujours avérée plus variée et moins prévisible. Le nucléaire a rencontré des oppositions initialement insoupçonnées ; le pétrole a échappé au peak oil qu’annonçait le WAES ; les turbines à gaz en cycles combinés ont ouvert de nouveaux horizons à l’industrie électrique ; le charbon a retrouvé un dynamisme qui a contredit le modèle de l’IIASA… Les futurs possibles ne sont sans doute pas en nombre infini mais ils sont multiples. Ce n’est donc pas une trajectoire qu’il faut étudier mais un champ des possibles qu’il convient d’explorer, sous l’angle des technologies d’utilisation et conversion des sources d’énergie, bien sûr, mais aussi sous celui de la variété possible des systèmes productifs, des institutions et des comportements susceptibles d’influencer les évolutions énergétiques. Dès lors, tout l’art du prospectiviste est de couvrir aussi correctement que possible ce champ sans tomber dans un nombre de scénarios interdisant toute intelligibilité des lignes de force.

Deuxième limite : l’étude du futur peut être conduite selon plusieurs démarches que les exercices passés ont confondues.

- La démarche exploratoire consiste à identifier des grandes tendances imaginables raisonnablement, au cours de la période étudiée. Elle repose donc sur l’étude aussi objective que possible des évolutions, souhaitables ou pas.

- La démarche normative cherche à repérer les inflexions et les ruptures qui permettraient d’éviter les risques sur lesquels débouchent les tendances observables.

Dans les travaux passés, d’une part l’incapacité à prévoir l’occurrence de changements de tendance du marché (chocs et contrechocs pétroliers), d’autre part, dans nombre de cas, la volonté explicite ou implicite d’orienter le système énergétique dans une direction donnée a conduit soit à négliger les tendances objectives qui n’allaient pas dans cette direction soit à survaloriser celles qui allaient dans le sens souhaité. En cause sans doute, la conviction du caractère auto-réalisateur des images du futur jugé souhaitable. Dans le cadre du WAES, tout ce qui favorisait le charbon (réserves, coûts de production, facilités des échanges internationaux) bénéficiait d’une attention particulière puisque l’exercice devait faire de cette source d’énergie LA réponse au problème. Au cours des travaux du GLTE, tous les signes d’un possible retournement du marché pétrolier géniaient l’évolution d’un approvisionnement énergétique qui devait faire place à plus de charbon (promis aux mineurs du Nord), des achats de gaz naturel (promis aux Algériens), du nucléaire plus qu’abondant, le tout sous contrainte d’une faible croissance de la demande d’énergie. Les hypothèses de prix du pétrole retenues (35-55 $ constants en 2000) étaient donc celles qui ne contredisaient pas l’approvisionnement souhaité. Désormais, la séparation entre les
Propectives et réalités

deux démarches (scénarios *business as usual* et scénarios de rupture, éventuellement dans une approche *backcasting*) s'impose.

Dans l'identification des grandes tendances, la troisième limite des expériences passées consistait à s'appuyer sur des « lois » ou des « modèles théoriques ». Le cas le plus évident est celui du biais introduit dans les travaux de l'IASA par la solidité apparente du modèle de substitution. Mais l'adoption sans précaution de certaines relations entre croissance de l'économie et de la consommation d'énergie (élasticité/PIB constante, inélasticité/prix sur longue période) a été tout aussi néfaste. En érigant en « lois » de portée universelle ce qui n’était que le résultat d’observations datées et localisées, plusieurs exercices de prospective sont passés à côté de changements majeurs du type de ceux qu’ont connus les techniques d’utilisation de l’énergie au lendemain des chocs pétroliers. Les prospectivistes sont aujourd’hui beaucoup plus prudents. Ils ont appris à introduire dans les évaluations de consommation d’énergie des intensités énergétiques variables dans le temps et dans l’espace. Les transpositions de pays à pays, usuelles dans toutes les prospectives anciennes (la France sur le chemin des États-Unis) n’ont plus cours, ce qui ne signifie pas la fin des interrogations (quid du modèle de consommation future de la Chine ou de l’Inde ?).

La quatrième limite concerne le contenu des exercices prospectifs. La réduction de ceux évoqués plus haut à une trajectoire quantitative appauvrirait considérablement les informations utiles aux décideurs. Outre la conception d’un futur énergétique unique (voir plus haut), la maigreur de ce contenu était en grande partie liée au manque de données et d’instruments capables d’en déduire des représentations cohérentes des évolutions possibles. Depuis, cette situation a profondément changé. Les études énergétiques se sont multiplies. Les modèles, de simulation notamment, n’ont cessé de s’améliorer. Il devient possible de concilier la cohérence d’un scénario et la richesse de son information, surtout lorsqu’elle est complétée par des descriptions qualitatives (type Shell 2050). Ce n’est cependant là qu’un début. Beaucoup reste à faire pour introduire dans la prospective énergétique des hypothèses relatives à l’évolution des comportements sociaux, des stratégies d’entreprise et des politiques publiques. Surtout lorsque dans le cadre d’études mondiales, on doit donner de plus en plus de poids à des pays peu connus !

B. La réalité des évolutions

1. La production

La structure du parc de production français d’électricité s’est considérablement modifiée depuis 1973.

La mise en place du programme électronucléaire, à partir de 1974, a permis une substitution massive de l’énergie nucléaire au fioul pour la production d’électricité. La montée en puissance de la production nucléaire, de 15 TWh en 1973 à 452 TWh en 2005, s’est donc accompagnée d’une réduction de la production thermique classique. La dernière mise en service industriel d’une centrale nucléaire remonte à avril 2002, à Civaux. En 2005, le nucléaire a contribué à la production totale d’électricité à hauteur de 78%.

Les 66 TWh de la production thermique en 2005 représentent à peine la moitié de son niveau de 1973 (119 TWh). Le charbon constitue encore le combustible majoritaire, mais le gaz naturel a beaucoup progressé, en particulier grâce à l’augmentation de la
cogénération, soutenue par le système des obligations d’achat. En 2005, la part du thermique classique s’élevait à 11% de la production totale d’électricité. La part de l’hydraulique dans la production totale d’électricité s’est également réduite de moitié, passant de 26% en 1973 à 10% en 2005, année à l’hydraulicité exceptionnellement basse (12 à 14% au début des années 2000), tout en progressant en valeur absolue.

En dehors du nucléaire et de l’hydraulique, les évolutions les plus notables dans la production nationale d’énergie primaire ont été les suivantes (cf. graphique n°2 ci-dessous) :

- La production nationale de charbon, qui a culminé à 60 Mt en 1958, a régulièrement diminué jusqu’au premier choc pétrolier de 1973 (29 Mt) ; après une stabilisation jusqu’en 1977, le déclin reprend en s’accélérant à partir de 1984, la production tombant sous la barre des 10 Mt en 1994. Les mines françaises n’étant plus compétitives, les pouvoirs publics ont mis en place un programme d’arrêt progressif de l’extraction charbonnière (signature du pacte charbonnier en 1994). Avec la fermeture du dernier puits lorrain de la Houve en avril 2004, la production se limite désormais aux seuls produits de récupération (0,6 Mt en 2005).

- La production nationale de pétrole a atteint un maximum de 3,7 Mt à la fin des années 80, le bassin parisien venant en relais du bassin aquitain. Depuis cette date, le déclin est continu, avec une production qui représente aujourd’hui 1,2 Mt, soit 1% de la production totale d’énergie primaire.

- Avec l’épuisement progressif du gisement de Lacq, l’extraction de gaz naturel a amorcé un retrait surtout sensible depuis 1980 : avec 10 TWh, le gaz naturel ne contribue plus aujourd’hui que pour 0,8% à la production nationale d’énergie primaire, contre un maximum de 15% au milieu des années 70 (85 TWh).

- La production de bois-énergie représente aujourd’hui de l’ordre de 9 Mtep, un chiffre à peu près constant depuis 1973.

- La production de géothermie a progressé lentement pour se stabiliser depuis 1998 aux alentours de 130 ktep. L’extension de certains réseaux de chaleur devrait permettre d’accroître légèrement cette production dans un proche avenir.

- La valorisation thermique des déchets renouvelables permet de produire autour de 350 ktep par an depuis le début du siècle.
2. La consommation

a) Consommation d’énergie primaire.

La croissance moyenne annuelle de la consommation d’énergie primaire, corrigée du climat, s’établit à +1,3% depuis 1990 et la part des différentes énergies n’y évolue plus de façon significative depuis plus de dix ans (cf. graphiques n° 4 ci-dessous).

Les énergies renouvelables thermiques occupent une place relative stable de la consommation totale depuis 1973 (voire légèrement décroissante en %). De façon plus globale, si la France est, en valeur absolue, l’un des premiers producteurs d’énergies renouvelables en Europe avec près de 17 Mtep par an, mais elle n’occupe que le onzième rang pour sa part dans la consommation totale d’énergie primaire (soit environ 6%).

Les parts respectives du gaz (multipliée par 2 entre 73 et 2005) et, plus significativement, de l’électricité (multipliée par 10) absorbent la baisse de la consommation de produits pétroliers jusqu’en 1985 ainsi que la croissance globale de la consommation.

La part des produits pétroliers a fortement décru en début de période (1973-1985) plus lentement par la suite, pour se stabiliser aux alentours de 45%. En volume néanmoins, la consommation de pétrole est repartie à la hausse entre 1986 et 2000.

\[
\begin{array}{lcccc}
\text{Autres renouvelables et déchets} & 17,29 & 4,14 & 0,25 & 0,82 \\
\text{Electricité hydraulique et éolienne} & 6,26 & 3,84 & 1,34 & 0,25 \\
\text{Électricité nucléaire} & 2,22 & 9,77 & 11,42 & 4,98 \\
\text{Gaz} & 117,86 & 116,81 & 117,67 & 137,58 (-0,2\%) \\
\text{Pétrole} & 9,77 & 43,52 & 12,52 & 4,98 (-12\%) \\
\text{Charbon} & 17,29 & 117,58 & 12,22 & 5,69 (+0,7\%) \\
\end{array}
\]

Source : DGEMP – Observatoire de l’énergie
Graphique n° 3: Consommation d’énergie primaire par énergie (corrigée du climat, en Mtep)

<table>
<thead>
<tr>
<th>Année</th>
<th>Combustibles minéraux solides</th>
<th>Produits pétroliers</th>
<th>Gaz</th>
<th>Electricité</th>
<th>Energies renouvelables thermiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>27,84</td>
<td>121,19</td>
<td>13,12</td>
<td>7,72</td>
<td>9,4</td>
</tr>
<tr>
<td>1979</td>
<td>31,87</td>
<td>114,22</td>
<td>16,97</td>
<td>16,77</td>
<td>9,39</td>
</tr>
<tr>
<td>1985</td>
<td>24,17</td>
<td>82,15</td>
<td>23,24</td>
<td>61,65</td>
<td>10,43</td>
</tr>
<tr>
<td>1990</td>
<td>19,15</td>
<td>88,32</td>
<td>26,31</td>
<td>83,19</td>
<td>10,43</td>
</tr>
<tr>
<td>1995</td>
<td>14,72</td>
<td>92,37</td>
<td>30,98</td>
<td>59,3%</td>
<td>10,43</td>
</tr>
<tr>
<td>2000</td>
<td>12,21</td>
<td>85,14</td>
<td>37,61</td>
<td>49,4%</td>
<td>13,36</td>
</tr>
<tr>
<td>2002</td>
<td>12,84</td>
<td>91,14</td>
<td>40,23</td>
<td>57,44%</td>
<td>12,36</td>
</tr>
<tr>
<td>2003</td>
<td>12,82</td>
<td>92,44</td>
<td>39,32</td>
<td>54,47%</td>
<td>12,36</td>
</tr>
<tr>
<td>2004</td>
<td>13,21</td>
<td>92,02</td>
<td>40,1</td>
<td>52,0%</td>
<td>12,36</td>
</tr>
<tr>
<td>2005</td>
<td>13,53</td>
<td>92,08</td>
<td>40,88</td>
<td>50,0%</td>
<td>12,36</td>
</tr>
</tbody>
</table>

Total: 179,67 Mtep

Source : DGEMP - Observatoire de l’énergie

Graphique n° 4: Part des énergies dans la consommation d’énergie primaire (%) (corrigée du climat)

<table>
<thead>
<tr>
<th>Année</th>
<th>Combustibles minéraux solides</th>
<th>Produits pétroliers</th>
<th>Gaz</th>
<th>Electricité</th>
<th>Energies renouvelables thermiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>15,5%</td>
<td>67,6%</td>
<td>7,3%</td>
<td>4,3%</td>
<td>5,2%</td>
</tr>
<tr>
<td>1979</td>
<td>16,5%</td>
<td>59,1%</td>
<td>10,9%</td>
<td>8,6%</td>
<td>4,9%</td>
</tr>
<tr>
<td>1985</td>
<td>12,0%</td>
<td>40,7%</td>
<td>11,5%</td>
<td>30,6%</td>
<td>5,2%</td>
</tr>
<tr>
<td>1990</td>
<td>8,4%</td>
<td>38,5%</td>
<td>11,5%</td>
<td>36,3%</td>
<td>5,3%</td>
</tr>
<tr>
<td>1995</td>
<td>5,9%</td>
<td>37,1%</td>
<td>12,2%</td>
<td>39,8%</td>
<td>5,3%</td>
</tr>
<tr>
<td>2000</td>
<td>5,3%</td>
<td>35,3%</td>
<td>14,0%</td>
<td>40,5%</td>
<td>5,0%</td>
</tr>
<tr>
<td>2002</td>
<td>4,7%</td>
<td>34,2%</td>
<td>14,7%</td>
<td>41,6%</td>
<td>4,7%</td>
</tr>
<tr>
<td>2003</td>
<td>5,0%</td>
<td>33,9%</td>
<td>14,4%</td>
<td>42,1%</td>
<td>4,8%</td>
</tr>
<tr>
<td>2004</td>
<td>4,7%</td>
<td>33,7%</td>
<td>14,5%</td>
<td>42,5%</td>
<td>4,5%</td>
</tr>
<tr>
<td>2005</td>
<td>4,8%</td>
<td>33,3%</td>
<td>14,8%</td>
<td>42,5%</td>
<td>4,5%</td>
</tr>
</tbody>
</table>

Source : DGEMP - Observatoire de l’énergie
Entre 1973 et 2005, la consommation intérieure d’électricité s’est développée deux fois plus vite que l’ensemble de la consommation d’énergie et a plus que doublé au cours de la période pour atteindre 482 TWh (171 TWh en 1973). Du fait du chauffage électrique, la puissance atteinte en pointe a augmenté plus vite que la consommation. (planche à ajouter)

A la suite du second choc pétrolier, la consommation d’électricité s’est développée moins vite que prévu, faisant apparaître un excédent de l’offre nucléaire par rapport à la demande nationale qui a permis d’exporter, au profit de la balance extérieure française.

b) Consommation d’énergie finale par secteur.


Tableau n° 3 : Part des énergies dans la consommation finale de 1973 à 2005

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustibles minéraux solides</td>
<td>13,2</td>
<td>10,1</td>
<td>9,7</td>
<td>7,2</td>
<td>5,5</td>
<td>4,7</td>
<td>4</td>
<td>4</td>
<td>3,9</td>
<td>3,8</td>
</tr>
<tr>
<td>Produits pétroliers</td>
<td>63,8</td>
<td>59,4</td>
<td>50,4</td>
<td>50</td>
<td>49</td>
<td>46,3</td>
<td>45,7</td>
<td>45,7</td>
<td>45,4</td>
<td>44,9</td>
</tr>
<tr>
<td>Gaz</td>
<td>6,6</td>
<td>11,5</td>
<td>15,5</td>
<td>16,4</td>
<td>17,8</td>
<td>20,7</td>
<td>22,2</td>
<td>21,5</td>
<td>21,7</td>
<td>22,1</td>
</tr>
<tr>
<td>Electricité</td>
<td>9,7</td>
<td>12,7</td>
<td>16,7</td>
<td>18,6</td>
<td>20,2</td>
<td>21,2</td>
<td>21,2</td>
<td>22,2</td>
<td>22,5</td>
<td>22,7</td>
</tr>
<tr>
<td>Energies renouvelables thermiques</td>
<td>6,7</td>
<td>6,4</td>
<td>7,6</td>
<td>7,9</td>
<td>7,5</td>
<td>7,1</td>
<td>6,8</td>
<td>6,7</td>
<td>6,5</td>
<td>6,5</td>
</tr>
<tr>
<td>Total (p)</td>
<td>100</td>
</tr>
</tbody>
</table>

(p) provisoire

Source : DGEMP - Observatoire de l’énergie

La part des transports dans la consommation finale énergétique (corrigée du climat) a été significativement à la hausse au cours de la période 1973-2000 mais se stabilise progressivement depuis (cf. graphique n°3 ci-dessous). La principale cause est une consommation toujours croissante de pétrole, que la réduction des consommations dans les autres secteurs (industrie*, résidentiel et tertiaire) peine à compenser. Sous cet angle, le secteur des transports est devenu, à la fin des années 70, plus énergivore que le secteur résidentiel et tertiaire.


Le secteur résidentiel et tertiaire, a substitué, de façon régulière, sa consommation de charbon et de pétrole (respectivement près de 10 % et 58 % en 1973, 0% et ~22% en fin de période) à celle de gaz naturel et d’électricité (moins de 10 % en 1973, plus de 30 % en 2005). Sa consommation d’énergies renouvelables thermiques est stable sur la période.

* Par secteur industrie, on entend l’industrie hors sidérurgie, non compris les usages non énergétiques de l’industrie
**Graphique n° 5 : La consommation finale d’énergie par secteur**

Source : DGEMP - Observatoire de l’énergie (Bilans de l’énergie)

3. **L’intensité énergétique**

Avant 1973, le rapport entre le taux de croissance de la consommation d’énergie et celui du PIB était considéré comme égal à 1.

Or, de 1973 à 1981, la consommation d’énergie primaire a augmenté de 5,8% alors que le PIB progressait de 22,5%. L’élasticité de la consommation d’énergie à la croissance économique a donc été sensiblement réduite.

**Graphique n° 6 : Intensité énergétique**

Source : DGEMP – Observatoire de l’énergie & ADEME

9 : cf. Chapitre III : présentation plus précise des résultats en matière d’efficacité énergétique
4. La facture énergétique

Notre dépendance par rapport aux produits pétroliers ayant très sensiblement diminué, les conséquences sur l'économie française de la hausse des prix du pétrole sont, toutes choses égales par ailleurs, plus limitées. Grâce aux actions engagées dès le premier choc pétrolier de 1973-74 et renforcées en 1979-80, la part du pétrole dans la consommation d'énergie primaire n'est plus que de 33% en 2005 contre 68 % en 1973. La facture énergétique extérieure, qui a représenté jusqu'à 5 % du PIB en 1981, n'a pas dépassé 2 % en 2005 malgré la hausse du prix du pétrole (cf. graphique n°7 ci-dessous), ce qui ne veut pas dire, bien sûr, qu'il n'y ait pas lieu de se soucier de la détérioration de la balance commerciale par rapport à la période antérieure.

Graphique n° 7 : La facture énergétique de la France 1970-2005

Sources : DGEMP – Observatoire de l'énergie – Douanes (DGDDI)

C. Les enseignements à tirer

Les deux « crises » de 1973/74 et d'aujourd'hui, dont on a rappelé ci-dessus qu'elles présentaient de nombreuses différences, ont au moins un point commun : « on ne les a pas vu venir ». Elles ont surpris la plupart des acteurs économiques et politiques, même si on peut toujours trouver des spécialistes qui avaient tiré le signal d'alarme avant que ces crises n'interviennent. On peut aussi considérer que la crise de 1973 a surpris dans son principe même, alors que ce sont plutôt la date de survenue et l'intensité de la crise actuelle qui ont réellement mis en défaut les prévisionnistes. Il y a donc des insuffisances ou des défauts dans nos systèmes de prospectives et de prévisions qu'il faut repérer pour ne pas commettre les mêmes erreurs à l’avenir ou, tout au moins, pour savoir où sont les fragilités de nos dispositifs et y apporter une attention spécifique.

En particulier, la comparaison des prévisions faites après la crise de 1973 et pendant les 30 années qui ont suivi avec la réalité des faits tels qu’ils se sont déroulés, si elle doit nous inciter à la modestie compte tenu des écarts constatés, est très instructive quand on s'attache à comprendre qu’elles sont les causes de ces écarts. Il faut donc distinguer les enseignements que l’on peut tirer des résultats qui ont réellement été atteints de ceux qui portent sur les méthodes. Ces derniers peuvent plus facilement être appliqués dans les travaux à venir, les mêmes causes produisant souvent les mêmes effets en ce qui concerne les méthodes, alors que le fait qu’un résultat prévu n’ait pas été atteint ne signifie certainement pas qu’il ne sera pas atteint plus tard : l’erreur peut n’avoir porté que sur le calendrier de l’évolution.
1. Les enseignements portant sur les méthodes de prévisions

a) le manque d’imagination

D’une manière très générale, on peut dire que les prévisions « officielles », qui ont toutes, plus ou moins, une base scientifique fondée sur l’analyse des données passées, ne savent pas « voir » les crises, c’est-à-dire les situations de « rupture » avec ce qui s’est passé précédemment, quelle que soit la nature de cette rupture.

Il y a une tendance « naturelle » à reproduire ce que l’on vient de vivre, notamment concernant certains éléments « clé » des prévisions, tels que les prix de l’énergie et, en particulier, celui du pétrole :
- avant 1973 : les prévisions intégraient un prix du baril stable,
- entre 1973 et 1985 : les prévisions prenaient en compte un prix du baril qui progressait régulièrement à moyen/long terme,
- années 90 : la baisse du prix du baril était une donnée des exercices de prévisions.

Dans ces trois cas, les prévisions n’envisageaient donc qu’une prolongation de la tendance issue de la dernière « crise » et reposaient donc sur l’hypothèse « implicite » qu’il n’y aurait plus de forte évolution du prix du pétrole, dans un sens comme dans l’autre, à court/moyen terme alors que ce prix a connu tout au long de cette période des évolutions particulièrement erratiques.

Cette tendance à la reproduction du modèle existant est facilement explicable par la difficulté, dans l’hypothèse où l’on n’envisage pas une reproduction du passé, à choisir entre les évolutions possibles et leur « intensité ». La solution qui consiste à faire des scénarios permet, de sortir de ce dilemme mais satisfait plus les « observateurs » que les « acteurs » qui demandent à avoir une vision claire de l’avenir pour faire leur choix.

b) l’insuffisante attention portée à la demande

Les erreurs les plus importantes, et qui auraient pu être au moins partiellement évitées, sont celles faites sur la demande qui ne fait pas suffisamment l’objet d’analyses et de réflexions prospectives ou pour laquelle on ne tient pas suffisamment compte des résultats des études. Ces erreurs peuvent prendre des formes très différentes :

- Après 1973, le double phénomène de la mauvaise connaissance des capacités d’évolution de la demande et de la reproduction du passé a conduit à fonder les prévisions sur l’hypothèse que l’intensité énergétique était une donnée intangible et constante alors que la réalité a montré, au contraire, que l’on pouvait fortement réduire l’intensité énergétique de notre économie. Les raisons de ces mauvaises anticipations de l’évolution de la demande sont multiples. Dans les années 70, le modèle dominant qui était pris en compte dans les prévisions était le modèle américain, beaucoup plus consommateurs d’énergie par habitant que le nôtre ; l’imitation de ce modèle conduisait donc naturellement à anticiper une forte augmentation des consommations. En outre, l’efficacité des politiques de maîtrise de la demande était mal connue puisqu’elles n’ont commencé à être appliquées que dans les années 70 ; enfin,
la structure de production de l’économie française a beaucoup évolué faisant une place de plus en plus grande au secteur tertiaire, moins énergétivore que les autres secteurs économiques.

- Même si ce n’est pas au rythme initialement prévu, après la crise pétrolière, les consommations d’énergie se sont déplacées vers l’électricité ; en Europe sur les dix dernières années, l’intensité électrique de l’économie est stagnante alors que l’intensité énergétique s’est considérablement réduite (entre 1994 et 2004 la consommation finale d’électricité dans l’Europe des 15, selon Eurostat, a crû de 25% tandis que la consommation finale d’énergie augmentait de 15%). Il reste qu’en France les prévisions de consommation électrique ont été trop élevées. Les conséquences de cette erreur d’appréciation étaient importantes puisque c’est à partir des chiffres de prévisions d’évolution de la demande d’énergie, et en particulier d’électricité, que l’on a « calibré » le programme électronucléaire français. Lorsqu’on a pris conscience du fait que les prévisions étaient supérieures aux consommations réelles, le programme a été recalé et il a été décidé de valoriser l’excédent de l’offre sur la demande nationale sous forme d’exportations10.

- Aujourd’hui, une des raisons pour lesquelles on n’a pas anticipé la récente augmentation des prix des combustibles fossiles (et de l’ensemble des matières premières), est que l’on a mal apprécié le développement économique des pays émergents, notamment de la Chine et de l’Inde jusqu’à un passé très récent alors qu’elles sont à l’origine des dérèglements actuels. Ainsi, cette « rupture » aurait pu être intégrée aux prévisions si on avait porté une plus grande attention à l’évolution et à la composition de la demande d’énergie mondiale. En réalité, l’augmentation de la demande chinoise a été occultée par le fait que, jusqu’en 1996, la Chine était exportatrice nette de pétrole ; elle est d’ailleurs encore autosuffisante aujourd’hui à hauteur de 60% de ses besoins.

c) l’insuffisante prise en compte des évolutions internationales

La crise de 1973 comme celle d’aujourd’hui sont intimement liées à des événements ou à des évolutions internationales sur lesquelles nous n’avons que peu ou pas de contrôle. Le « manque d’imagination » souligné précédemment nous empêche de prendre en compte dans les prévisions « officielles » la modification profonde du contexte international par rapport à celui existant au moment où les prévisions sont faites, notamment parce que la géopolitique n’est pas une science exacte...

Toutefois, rétrospectivement, on constate que les « événements internationaux », s’ils ne peuvent pas être prévus en terme de calendrier ne sont en fait que les révélateurs d’évolutions économiques et sociales (y compris démographiques) qui peuvent être appréhendées et introduites dans les modèles. Mais il faut aussi, ensuite, avoir le « courage » de prendre en compte les résultats que l’on obtient même lorsque, comme pour le développement des pays émergents, cela affecte sensiblement les conclusions sur l’évolution à venir et conduit à prévoir ces fameuses « ruptures » que l’on a du mal à concevoir et à accepter.

10 : Au demeurant l’écart entre prévisions de consommation électrique et consommations réalisées est complexe à analyser. Une part importante provient de la surestimation de la croissance économique, et une autre, moindre, de la performance en matière de disponibilité, meilleure qu’anticipé.
Aujourd'hui, on peut s'interroger par exemple sur la capacité de nos prévisions et de nos modèles à prendre suffisamment en compte le phénomène mondial du changement climatique, tant dans ses effets sur les prix à venir de l'énergie, liés à celui de la tonne de carbone, que dans ses conséquences « physiques » qui risquent d’affecter profondément le mode de vie d’un grand nombre de « terriens ».

Il est vrai que, sur tous ces thèmes, il y a des difficultés à se représenter les conséquences de la montée en puissance de l’Asie, son pouvoir d’attraction sur l’offre mondiale, sur l’exploitation de la Sibérie et le tropisme qu’exercera l’Asie sur la Russie…

d) l’insuffisante attention portée à l’évolution des capacités de production

Cette mauvaise apprehension de la demande mondiale est probablement en partie responsable du fait que l’on a porté peu d’attention aux tensions sur les capacités de l’offre d’énergie qui se faisaient jour progressivement. En outre, le monde a vécu pendant de nombreuses années avec des capacités énergétiques excédentaires qui n’ont pas encouragé les industriels du secteur à investir tant en amont qu’en aval, le niveau des prix renforçant ce comportement.


(à préciser et à compléter)

e) le rôle crucial des hypothèses faites en matière de croissance économique

Une partie des écarts entre les prévisions et la réalité en terme de demande s’explique par des éléments qui ne relèvent pas directement du domaine de l’énergie mais qui concernent l’évolution générale de la croissance économique nationale ou internationale (à illustrer dans la partie présentation des prospectives).

En terme d’analyse et de réflexion, deux types d’exercices de prospectives sont intéressants :
- élaborer une série de scénarios reposant sur des hypothèses de croissance différentes, de manière à mesurer la sensibilité des évolutions à cette donnée ;
- choisir l’hypothèse de croissance qui paraît la plus probable et élaborer des scénarios en modifiant les autres paramètres, notamment ceux concernant l’efficacité énergétique et d’éventuelles évolutions technologiques dans le domaine de l’offre comme de la demande (solution retenue par les derniers travaux du Plan publiés en 1998.

Le rapprochement des résultats des divers scénarios pourrait apporter d’utiles éclairages aux décideurs quant aux politiques publiques à mener ; en revanche, en multipliant les scénarios, cette méthode limite certes les possibilités de « passer » à côté de la réalité, mais elle réduit également la capacité de la prospective à proposer aux acteurs économiques une vision partagée de l’avenir.
2. Les enseignements portant sur les résultats

Au-delà des méthodes, les écarts, forts ou faibles, entre prévisions et résultats peuvent aussi nous apporter quelques enseignements utiles pour l’avenir.

a) l’intensité énergétique est une variable sensible...

L’intensité énergétique a sensiblement évolué pendant cette période alors qu’elle était considérée comme intangible et constante dans les années 70. L’expérience a montré qu’elle est très sensible (cf. graphique n°6).

b) ... aux évolutions inextricablement conjuguées des prix de l’énergie et des politiques énergétiques

L’augmentation des prix de l’énergie a été un facteur déterminant de cette évolution, à la fois parce qu’elle conduit « naturellement » les consommateurs à réduire leur consommation et parce qu’elle encourage les gouvernements à mettre en place des politiques adaptées. A l’inverse, pour les mêmes raisons, la réduction des prix annule une partie des efforts faits en période de prix chers.

Mais il est très difficile de mesurer quels ont été les impacts respectifs des prix de l’énergie et des politiques énergétiques sur l’évolution de l’efficacité énergétique. En effet, entre 1973 et 2000, la politique énergétique a suivi celle des prix :

- Après le premier choc de 1973 et surtout le second de 1979, l’intensité énergétique a fortement diminuée sous l’influence des prix en hausse et des politiques énergétiques qui ont tout d’abord soutenu la réduction des gaspillages faciles à combattre par des changements de comportements puis ont permis le développement de technologies et d’investissements qui ont structurellement changé les consommations d’énergie.

- Mais on a aussi constaté que ces résultats étaient fragiles et que l’effet conjugué de prix de l’énergie à la baisse et d’une politique d’économies d’énergies plus « faible » conduisait à une évolution à la hausse de l’intensité énergétique. En effet, à partir de 1985, la politique de maîtrise de l’énergie a progressivement perdu de son intensité alors même que l’évolution du prix du pétrole rendait moins attractifs les investissements de maîtrise de l’énergie et de développement de nouvelles énergies.

- A partir de 2000, la lutte contre le changement climatique a « inspiré » un regain de la politique d’efficacité énergétique, sans évolution sensible des prix de l’énergie. Mais on n’a pas eu le temps de mesurer les effets de cette relance puisque dès 2003, le prix de l’énergie est reparti à la hausse et est venu soutenir les efforts de la politique « climatique ».

On peut imaginer que la « pérennité » du changement climatique assurera mieux la « pérennité » des politiques d’efficacité énergétique que la réaction à l’évolution des prix et permettra de maintenir un effort plus constant en faveur de la maîtrise de l’énergie, au moins d’origine fossile.
c) la nature très capitaliste de l’industrie de l’énergie explique en partie l’évolution cyclique des prix et la durée des cycles

Quel que soit le type d’énergie considéré, les activités industrielles nécessaires tant en amont, pour rechercher la matière première, qu’en aval, pour la traiter et la mettre à disposition sous une forme utilisable, sont très capitalistiques. Réaliser des investissements dans ce secteur nécessite des moyens financiers importants et donc des « assurances » sur leur rentabilité liée aux prix de vente futur des produits élaborés. Par ailleurs la réalisation des investissements eux-mêmes est relativement longue et leur impact sur la production ne se fait sentir que plusieurs années après que la décision de les faire ait été prise.

En conséquence, les dernières années ont vu se développer les séquences suivantes : une insuffisance de capacités de production énergétiques, liée à une augmentation de la demande, entraînant une augmentation des prix. Cette dernière provoque une augmentation des prévisions de rentabilité des investissements complémentaires tout en laissant persister pendant plusieurs années une situation de prix élevé pendant que les investissements sont réalisés. Les décisions d’investissements étant prises par des acteurs « indépendants » des uns des autres, leur mise en œuvre simultanée provoque l’apparition de capacités excédentaires, ce qui entraîne une diminution des prix mettant ainsi fin temporairement à la réalisation de nouveaux investissements... jusqu’à ce que l’obsolescence des investissements ou l’augmentation de la demande n’enclenche un nouveau cycle.

La difficulté tient au fait que la durée de ces cycles ne semble pas très stable puisqu’elle est en partie liée à l’évolution de la demande nationale et/ou internationale et que des événements géopolitiques peuvent venir perturber le déroulement « normal » des séquences.

Ces réflexions conduisent toutefois à souligner l’intérêt qu’il y aurait à suivre avec plus d’attention l’évolution des capacités disponibles et d’essayer de provoquer des évolutions des investissements avant que les crises n’apparaissent pour des raisons de sous capacités.

Or, comme on le verra au chapitre IV, les politiques publiques s’intéressent peu à ces sujets en dehors des périodes de crises elles-mêmes.
II. Evolution des techniques et des coûts

A. Évolution des techniques

1. L’absence de « vraie » rupture technologique

Déterminer s’il y a eu ou non des ruptures technologiques pendant la période sous revue est rendu complexe par l’existence d’un débat sur ce que recouvre précisément cette expression.

Pendant cette période d’environ 30 ans, il semble que l’on puisse considérer qu’il n’y a pas eu de « vraie » rupture technologique, c’est-à-dire l’apparition d’une innovation technologique qui se serait développée très rapidement et qui aurait donc modifié profondément les conditions d’utilisation ou de production de l’énergie. Une telle rupture n’était d’ailleurs pas prévue dans les exercices de prospectives des années 70 ou 80, à un horizon de 30 ans. Une étude de l’AIE12 de 1982 prévoyait ainsi une part décroissante du gaz dans le mix énergétique des pays de l’OCDE alors que la mise au point de la turbine à gaz, apparue au début des années 90, a par exemple, modifié la part du gaz devenue croissante. Les exercices de prospectives actuels n’envisagent d’ailleurs pas non plus, dans leur grande majorité, de rupture technologique à un tel horizon.

S’il n’y a pas eu « d’innovation radicale », il y a eu cependant des « innovations majeures » dans le domaine de la production d’énergie :
- Les turbines à gaz à cycles combinés, en augmentant massivement les rendements, ont permis d’utiliser le gaz en base ou en semi-base et non seulement en pointe, améliorant ainsi sensiblement la compétitivité de ce mode de production de l’électricité. Mais, dans le contexte énergétique français, l’impact de ces turbines est resté limité jusqu’à présent.
- Les techniques de lit fluidisé pour les centrales thermiques au charbon, ainsi que, plus récemment, les cycles supercritiques, en faisant passer le rendement des centrales à charbon de 35% environ pour des installations mises en service dans les années 70 à 46% pour des procédés supercritiques disponibles aujourd’hui, tout en réduisant leur niveau de pollution, leur ont redonné un regain d’intérêt ; reste à régler le problème des émissions de CO2.
- Les technologies d’exploration-production d’hydrocarbures ont également fait des progrès remarquables. Ainsi, la sismique 3D, le forage dirigé, les techniques utilisées en offshore très profond ont non seulement renouvelé les réserves après 1985, mais contribué à un changement de paradigme géologique. La possibilité de trouver de grands gisements de pétrole à des profondeurs que le gradient de température semblait réserver au gaz change les perspectives, comme semble l’illustrer la récente découverte de Chevron dans le Golfe du Mexique.
- Les turbines éoliennes ont également fait de grand progrès en terme de puissance. Dans les années 1980, le « type de conception danois » tripale à axe horizontal s’est établi comme modèle principal sur le marché mais les plus grandes turbines commerciales dépassaient rarement la puissance de 150

11 : Le développement du téléphone portable est un bon exemple de rupture technologique pendant cette période.
12 : Perspectives énergétiques mondiales, 1982, AIE-OCDE
kW. Dans les années 90, avec le décollage du marché de l’énergie éolienne à l’échelle mondiale, constructeurs et gouvernements ont investi en vue d’en améliorer le rendement et le coût. La majorité des machines commerciales font à présent plus de 1 mégawatt (MW), et des turbines faisant de 3 à 4 MW sont disponibles. Parallèlement, les turbines éoliennes de petite puissance (dont la puissance nominale est inférieure à 300 kW) ont évolué vers un marché distinct qui leur est propre.

Ainsi, qu’il y ait eu ou non « rupture technologique », il est évident qu’il y a eu des évolutions importantes dans la manière de produire ou de consommer l’énergie durant ces 30 dernières années, soit du fait d’innovations majeures, soit, plus généralement, grâce à des progrès continus qui ont profondément fait évoluer tant l’offre que la demande.

2. L’offre d’énergie marquée par le développement de l’énergie nucléaire

En ce qui concerne l’offre d’énergie, en France, l’évolution majeure est le développement du parc nucléaire et la part prise progressivement par l’électricité nucléaire dans l’ensemble de la production électrique française.

Graphique n° 8 : Part de la production d’électricité d’origine nucléaire 1973-2005

A l’inverse, le charbon a pratiquement disparu en tant que vecteur de production de chaleur et n’est plus utilisé que dans les périodes de pointe pour produire de l’électricité, même s’il constitue encore le combustible fossile majoritaire pour la production électrique thermique française.

Parallèlement, l’usage des hydrocarbures s’est de plus en plus concentré dans le secteur des transports.
Enfin, l’accessibilité au gaz de la population française a été sensiblement améliorée, élargissant ainsi notablement la part de cette énergie fossile dans la consommation énergétique française (cf. p. 15-16, partie I-B 2. a/ la consommation d’énergie finale par secteur).

Quant aux énergies renouvelables, elles ont fait l’objet d’une politique de promotion et de soutien après les deux premiers chocs pétroliers, mais la diminution du coût de l’énergie liée soit à l’évolution du prix du pétrole, pour la chaleur, soit à l’évolution du prix du KWh nucléaire, pour l’électricité, ainsi qu’un effort insuffisant pour structurer les filières et assurer leur professionnalisation ont conduit à abandonner progressivement les efforts faits dans ce domaine jusqu’au début des années 2000. Cette évolution particulièrement sensible en France et qui a été marquée par l’échec de projets importants, tel celui de la centrale Thémis, n’a pas été générale, certains pays ayant persévéré dans cette voie malgré la rentabilité réduite des projets. À partir des années 2000, la lutte contre le changement climatique a rendu de l’intérêt au développement des énergies non carbonées et a redonné un élan à cette politique.

3. Des progrès importants dans l’efficacité énergétique des équipements compensés par l’augmentation des besoins

Les réglementations, les normes, le prix de l’énergie ont encouragé la recherche de technologies permettant de réduire la consommation des équipements et des matériels consommant de l’énergie qu’ils soient destinés aux particuliers ou aux entreprises dans leurs process industriels.

Les progrès ont été très importants :
- dans l’industrie : à chiffrer
- dans le bâtiment, la réglementation thermique, instituée en 1975 et progressivement sévèreisée, a divisé par 2 la consommation énergétique au m² des bâtiments neufs mais aucun contrôle n’a été effectué de la bonne application de ces réglementations ;
- la consommation des véhicules (voir tableau ci-après) : de 1974 à 1985, les consommations des véhicules essences et diesel ont baissé fortement ; de 1986 à 2000 : les performances des véhicules essence et diesel ont augmenté et leur consommation a stagné mais la consommation moyenne a baissé à cause de la pénétration du diesel ; à partir de 2000, les consommations des véhicules tant essence que diesel ont recommencé à baisser sous l’influence de l’accord volontaire des constructeurs européens avec l’Union européenne ; il est probable, toutefois, que les objectifs fixés pour 2008 ne seront pas atteints.

Tableau n° 4 : Consommations moyennes pour l’ensemble des voitures particulières

<table>
<thead>
<tr>
<th>Unité : litre/100 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td>Consommation total</td>
</tr>
<tr>
<td>Superécarburants</td>
</tr>
</tbody>
</table>

*Source : DGEMP - Observatoire de l’énergie (panel SECODIP)*
- l’électroménager a fait l’objet d’un étiquetage systématique qui a conduit à réduire drastiquement les consommations des réfrigérateurs et autres matériels : à chiffrer
- les téléviseurs : à chiffrer

Mais, en ce qui concerne les particuliers, ces résultats ont été « annulés » par l’amélioration de la qualité de la vie et du confort :

- le parc de logements s’est accru de 40% et la taille moyenne des logements a augmenté,
- l’équipement en matériel électroménager s’est généralisé,
- de nouveaux besoins sont apparus ; en particulier les produits « bruns » ont envahi nos logements : TV, ordinateur, chaîne Hi-fi... Le téléphone mobile génère par ailleurs de l’ordre de 1 TWh par an de consommation électrique supplémentaire (batteries et relais pour le transport du signal),
- la climatisation est restée relativement peu développée en France mais elle progresse, depuis 2003 notamment, dans le secteur tertiaire surtout,

### Tableau n° 5 : Distance totale parcourue

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Toutes voitures particulières</td>
<td>271,7</td>
<td>307,4</td>
<td>319,8</td>
<td>329,3</td>
<td>340,0</td>
<td>350,7</td>
<td>351,9</td>
<td>351,2</td>
<td>354,6</td>
<td>363,4</td>
<td>371,4</td>
<td>369,5</td>
</tr>
<tr>
<td>Évolution année N/N-1 (%)</td>
<td>+0,7</td>
<td>+4,0</td>
<td>+3,0</td>
<td>+3,3</td>
<td>+3,2</td>
<td>+0,3</td>
<td>-0,2</td>
<td>+1,0</td>
<td>+2,5</td>
<td>+2,2</td>
<td>-0,5</td>
<td></td>
</tr>
<tr>
<td>Véhicules à essence</td>
<td>208,3</td>
<td>186,8</td>
<td>192,2</td>
<td>191,1</td>
<td>190,9</td>
<td>192,3</td>
<td>185,1</td>
<td>172,2</td>
<td>167,1</td>
<td>161,5</td>
<td>157,6</td>
<td>150,4</td>
</tr>
<tr>
<td>Évolution année N/N-1 (%)</td>
<td>-4,6</td>
<td>+2,9</td>
<td>-0,6</td>
<td>-0,1</td>
<td>+0,8</td>
<td>-3,8</td>
<td>-7,0</td>
<td>-3,0</td>
<td>-3,4</td>
<td>-2,4</td>
<td>-4,6</td>
<td></td>
</tr>
<tr>
<td>Véhicules diesel</td>
<td>66,6</td>
<td>120,2</td>
<td>129,1</td>
<td>138,5</td>
<td>150,2</td>
<td>159,8</td>
<td>167,7</td>
<td>180,7</td>
<td>190,7</td>
<td>204,9</td>
<td>217,8</td>
<td>221,9</td>
</tr>
<tr>
<td>Évolution année N/N-1 (%)</td>
<td>+12,2</td>
<td>+7,4</td>
<td>+7,3</td>
<td>+8,4</td>
<td>+6,4</td>
<td>+5,0</td>
<td>+7,7</td>
<td>+5,6</td>
<td>+7,4</td>
<td>+6,3</td>
<td>+1,9</td>
<td></td>
</tr>
</tbody>
</table>

Source : DGEMP - Observatoire de l’énergie (panel SECODIP)

En 30 ans, la demande a donc très sensiblement évolué dans le sens d’un accroissement global fort, qui est la conséquence de ce double mouvement : une amélioration continue de l’efficacité énergétique qu’il faut donc intégrer dans les réflexions pour l’avenir, mais aussi une augmentation des « besoins ». Ces phénomènes sont clairement illustrés dans le cas des transports (cf. graphique n° 6 ci-dessous).
Evolution des techniques et des coûts

Graphique n° 9 : Consommation de carburant et parc des voitures particulières

Les véhicules particuliers ont enregistré une forte baisse de leurs consommations unitaires en 2003 et 2004 (-1,5% en litres/100km, pour l'ensemble des véhicules particuliers essence et diesel, -1,8% en 2003 et contre -0,9% en 2002 et -0,3% en 2001), du fait de la désérialisation accrue du parc bien sûr mais aussi en raison du respect plus strict des vitesses limites. En 2005, la baisse n'est que de -0,9%. Par ailleurs, le parc continue de ralentir sa croissance : +0,9% en 2005, après +1,3% en 2004, et contre une tendance 1996-2002 de +2,3% en moyenne.

4. les enseignements à tirer

a) en 30 ans, les composantes de l’offre énergétique ont très sensiblement évolué, mais de manière très différentes selon les pays

En matière d’offre d’énergie, les évolutions très fortes et très structurantes de ces 30 dernières années montrent que :

Il est possible de changer profondément les composantes de l’offre énergétique sur un laps de temps de 15 à 20 ans quand on s’en donne les moyens et que la volonté politique existe (nucléaire).

- La composition de l’offre d’énergie peut avoir des conséquences majeures sur la demande, la part de l’électricité dans le chauffage en France par rapport à nos voisins en étant une illustration.

- La politique de *stop and go* en matière de renouvelables et l’insuffisante attention portée aux progrès de ces sujets au niveau international ont eu pour conséquence de ne pas permettre aux industriels français de se développer dans ces domaines qui ont depuis prospéré sur la planète et qui ont aujourd’hui des taux de croissance extrêmement élevé.
b) les progrès de l’efficacité énergétique ne doivent pas conduire à sous-estimer la nécessité d’agir sur la maîtrise des besoins.

En ce qui concerne la demande d’énergie, il faut distinguer l’efficacité énergétique et la maîtrise des besoins :

- En matière d’efficacité énergétique, des progrès continus et rapides ont été réalisés, notamment sous l’impulsion des politiques énergétiques volontaristes. Toutefois, cette réponse ne saurait suffire. Il ne faut pas négliger, en effet, les conséquences de l’effet rebond, c’est-à-dire du fait que tout ou partie des économies engendrées par l’amélioration de l’efficacité énergétique des produits seraient réinvesties dans de nouveaux équipements, provoquant ainsi une nouvelle augmentation de la consommation. Ainsi, par exemple, l’amélioration de l’efficacité énergétique des bâtiments et des véhicules a été plus que compensée par l’accroissement des parcs. Parallèlement, les progrès fait en matière de rendement des moteurs ont été utilisés pour augmenter la puissance des voitures afin de permettre un accroissement de la vitesse maximale et du confort (assistance de direction, de freinage, climatisation, …). Ceci s’est traduit par l’augmentation correlative de la masse pour des raisons de sécurité passive. D’une manière générale il est cependant difficile de déterminer ce qui relève de cet effet rebond de ce qui relève de l’augmentation, plus globalement, du pouvoir d’achat.

- En revanche, l’augmentation des besoins relève de deux phénomènes différents :
  
  o il est difficile d’empêcher le développement de produits nouveaux qui « créent » des besoins nouveaux, dans le cadre de nos sociétés démocratiques. Pour agir dans ce domaine, si le prix n’est pas suffisant pour détourner de l’achat du nouveau produit, la sensibilisation et l’explication peuvent avoir une certaine efficacité… mais le succès n’est jamais complètement assuré.

  o Mais une grande partie des besoins nouveaux, notamment en matière de transports, sont « subis », plus ou moins consciemment par les consommateurs : éloignement travail/habitat ; absence de transports en commun ; étalonnage des villes… de même, pour les entreprises, le transports routiers est encouragé par l’absence ou l’insuffisance d’infrastructures ou de services efficaces de transport fluvial ou ferroviaire. Sur ces sujets, si l’on n’y prend pas garde, le prix de l’énergie induit à moyen/long terme des types d’organisation et d’aménagement du territoire qui se transforment ensuite en piège lorsque l’évolution du prix s’inverse, la volatilité du prix ne pouvant pas être suivie par les infrastructures.

Ces réflexions ont deux conséquences. Pour être efficace dans la durée, la maîtrise des besoins d’énergie :

  - ne doit pas être « cantonnée » aux outils classiques de la politique énergétique mais, bien au contraire, être également une composante des autres politiques

13 : cf. les campagnes pour essayer de convaincre qu’on peut se passer de la climatisation dans les logements et qu’il faut utiliser le moins possible la climatisation des véhicules ; cf. également le discours anti 4x4 qui semble commencer à avoir des résultats… peut-être aussi à cause du prix des carburants.
publiques. Les politiques d’urbanisme, d’aménagement du territoire et de développement des infrastructures de transports sont des éléments fondamentaux de toute politique énergétique.

- de manière continue, c’est-à-dire même lorsque les prix de l’énergie n’encouragent pas ce type de réflexion. Cela signifie donc que le calcul économique fondé sur le coût énergétique à un instant donné n’est pas toujours un bon moyen de faire les choix de politiques publiques qui ont un effet à moyen/long terme.

B. L’évolution des coûts des énergies

Au cours de ces 30 années, les coûts et donc les prix de chaque énergie ont sensiblement évolué, en valeur absolue comme en valeur relative.

1. l’électricité

En ce qui concerne l’électricité, le programme nucléaire a permis de faire baisser régulièrement le prix du kWh en France et de le maintenir en dessous de la moyenne européenne au cours des deux dernières décennies.

Graphique n° 10 : Electricité à usage domestique\(^1\) (prix TTC)

![Graphique n° 10](image)

Source : DGEMP – Observatoire de l’énergie d’après Eurostat (janvier 2006)

Ces dernières années, avec la libéralisation du marché, le prix du kWh pour les clients éligibles a désormais tendance à s’aligner sur ceux des pays voisins, eux-mêmes influencés par l’évolution des autres sources d’énergie (cf. graphique n° 11 ci-dessous).

\(^1\) La consommation type retenue par Eurostat pour un usage domestique est une consommation d’électricité de 3.500 kWh annuels dont 1.300 kWh la nuit. Les prix sont TTC (toute taxe comprise).
Evolution des techniques et des coûts

Graphique n° 11 : Electricité à usage industriel\(^{15}\) (prix HTT)

Pour mémoire, il est procédé à deux relevés annuels, au ler janvier et au ler juillet.

*Source : DGEMP – Observatoire de l’énergie d’après Eurostat (janvier 2006)*

2. le gaz

Les opérateurs historiques étant alimentés, pour l’essentiel, dans le cadre de contrats *take or pay* de très longue durée, avec des prix rendus comparables dans les différents pays, les écarts de prix sont faibles et ils n’ont pas varié significativement avec l’ouverture des marchés à la concurrence.

Graphique n° 12 : Gaz naturel à usage industriel\(^{16}\) (prix HTT)

Pour mémoire, il est procédé à deux relevés annuels, au ler janvier et au ler juillet.

*Source : DGEMP – Observatoire de l’énergie d’après Eurostat (janvier 2006)*

\(^{15}\) La consommation type d’électricité retenue par Eurostat pour un usage industriel est une consommation de 10 GWh annuels avec une demande maximale de 2,500 kW, pendant 4,000 heures par an. Les prix sont hors taxe

\(^{16}\) La consommation type de gaz naturel retenue par Eurostat pour un usage industriel est une consommation de 11,63 GWh par an, 250 jours pour 4,000 heures. Les prix sont hors taxe
Graphique n° 13 : Gaz naturel à usage domestique\(^{17}\) (prix TTC)

3. le fuel

(mettre ici graphiques prix fuel usages domestique et industriel extraits de la page 50 + indices base 100 en 73)

4. les carburants

En ce qui concerne les carburants, les prix ont suivi l’évolution du cours du pétrole, amorties par un important matelas fiscal, voire par des politiques contracycliques (TIPP flottante). \(\text{à compléter}\)

Compte tenu de l’évolution de la fiscalité sur les carburants et de la hausse des prix du pétrole ces dernières années, le prix du litre d’essence ou de gasoil a rejoint et même dépassé en euros constants celui atteint en 1979. Cependant, compte tenu de l’évolution du pouvoir d’achat des français, le coût relatif d’un « plein », en tenant compte de la diesélisation du parc, a sensiblement diminué. On fait également davantage de km avec le même « plein ». \(\text{à compléter}\)

\(^{17}\) : La consommation type de gaz naturel retenu par Eurostat pour un usage domestique est une consommation de 23.260 kWh par an. Les écarts plus significatifs de prix pour le client domestique dans ce graphique proviennent de la fiscalité.
Evolution des techniques et des coûts

Graphique n° 14 : Prix au litre des carburants à la pompe

Source : DGEMP – Observatoire de l’énergie – DIREM

5. les énergies renouvelables

Dans l’ensemble, le coût de production des énergies renouvelables a diminué durant la période mais pas suffisamment pour les rendre compétitives. L’augmentation du prix des énergies fossiles et les progrès continus de la réduction de leurs propres coûts améliorent leur situation.

a) la production électrique d’origine renouvelable

(1) la production électricité éolienne
Fin 2005, le parc français représente 1,9 % des 40 504 MW opérationnels installés dans Europe des 15 mais le marché français représentait 5,9 % du marché européen. Cette différence correspond au rattrapage du marché français par rapport aux autres pays européens, du fait d’un démarrage plus tardif.18


(2) la production d'électricité à partir de la biomasse

Le développement de cette filière a été peu recherché. La biomasse est une ressource de relativement grande ampleur, mais avec de multiples usages possibles : alimentation, matériaux (bois construction, meubles, papier,...), chimie, carburants, électricité, chaleur. La production d’électricité seule a un faible rendement, ce qui conduit à un gaspillage de la ressource. L’usage le plus rationnel, lorsqu’il est possible, est la combustion directe pour fournir de la chaleur à basse température. En cogénération électricité/chaleur, il peut y avoir un intérêt comme dans les DOM avec la bagasse (résidu ligneux de la canne à sucre) dont la chaleur est utilisée dans le process industriel des sucreries et l’électricité introduite sur le réseau d’EDF. Les coûts réels sont mal connus du fait des mécanismes de défiscalisation spécifiques aux DOM.


(3) la production d’électricité photovoltaïque

La dynamique de développement a été fondée de 1973 à 1995 sur l’équipement des sites isolés (un marché mondial d’environ 250 MW/an actuellement) puis à partir de 1996, de façon de plus en plus prépondérante, par les systèmes décentralisés reliés...

**Graphique n° 17 : World Photovoltaic Shipments 1971-2003**

Les premières photopiles avant le démarrage des applications terrestres (1973) étaient "vendues" à plus de 1000 € le Watt crête (Wc). Les programmes massifs de R&D aux USA, en Europe et au Japon, après les chocs pétroliers, ainsi que les programmes d’applications pilotes en sites isolés et sur réseau ont fait tomber ce coût à "300 F courants par Wc" à la fin de la décennie 70 puis à "120 F courants" installés au milieu des années 80 (centrales PV pilotes Européennes). Les coûts de modules pour les applications de puissance sont actuellement de l’ordre de 3 à 3,5 €/Wc du fait d’une augmentation temporaire des prix due à une offre inférieure à la demande et à des tensions pour encore deux ans sur les approvisionnements de silicium charge. Les coûts de systèmes installés varient depuis 4,5 €/Wc (grandes centrales au-delà de 4 MW en Europe en 2004-2005) à 6 à 7 €/Wc pour les systèmes connectés au réseau et intégrés au bâtiment.

Actuellement, la dynamique du parc mondial est de près de + 30 % par an depuis 6 ans (cf. graphique n° 13 ci-dessous). Pour 2005, les évaluations varient entre 1500 et 1800 MWc.
Evolution des techniques et des coûts

Graphique n° 18 : Production de cellules photovoltaïques

Source: Photon International

Les baisses de coûts reprendront avant 2009 du fait de la mise en service industriel d’usines de très grandes capacités de production de silicium charge, de cellules (silicium cristallin et couches minces) et de modules.


b) La production d’énergie thermique d’origine renouvelable

Les valorisations chaleur ont un contenu technologique beaucoup moins élevé que l’éolien ou le photovoltaïque et les évolutions constatées portent plus sur l’organisation des filières professionnelles que sur les progrès techniques et économiques.

(1) le bois-énergie

Depuis 1992, on constate une faible diminution des coûts d’investissements et des variations divergentes sur le prix des combustibles pour les chaufferies bois.
Graphique n° 19 : Evolution des coûts d’investissement entre 1990 et 2002

<table>
<thead>
<tr>
<th>Puissance en kW</th>
<th>Coût 1990 en € par kW</th>
<th>Coût 2002 en € par kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>250-300</td>
<td>453</td>
<td>424</td>
</tr>
<tr>
<td>700</td>
<td>255</td>
<td>227</td>
</tr>
<tr>
<td>1000</td>
<td>215</td>
<td>196</td>
</tr>
</tbody>
</table>

Source : CTBA - ADEME

Graphique n° 20 : Evolution du prix du combustible entre 1992 et 2005

Il est particulièrement intéressant de constater la diminution du prix des plaquettes forestières, qui est de loin le combustible représentant le plus grand potentiel. Cette diminution est le reflet de la structuration d’une filière professionnelle allant de la récolte de la matière première en forêt jusqu’à l’implantation et l’exploitation de chaufferies.

Par contre, on remarque la grande sensibilité du prix des granulés au développement récent de cette filière qui induit une forte demande sur une matière première recherchée pour d’autres usages (panneaux de particules).

Les analyses économiques menées sur les chaufferies bois récentes en tenant compte des prix actuels de l’énergie montrent les taux de subvention nécessaires suivants, en fonction du type de combustible bois et de l’énergie de comparaison :

\[19^\text{e} \text{ Actualisation INSEE : } 1 \text{ € de 2002 équivaut à } 1,061 \text{ € de 2005 et } 1 \text{ F de 1990 équivaut à } 0,19866 \text{ € de 2005}\]
Evolution des techniques et des coûts

Tableau n° 6 : Taux de subvention nécessaire en fonction du type de combustible bois

<table>
<thead>
<tr>
<th>Gamme puissance</th>
<th>SANS RESEAU</th>
<th>Plaquettes/Gaz aide nécessaire</th>
<th>Broyat de DIB/GAZ aide nécessaire</th>
<th>Plaquettes/FOD aide nécessaire</th>
<th>Broyat de DIB/FOD aide nécessaire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Plaquettes/Gaz aide nécessaire</td>
<td>Broyat de DIB/GAZ aide nécessaire</td>
<td>Plaquettes/FOD aide nécessaire</td>
<td>Broyat de DIB/FOD aide nécessaire</td>
</tr>
<tr>
<td>&lt; 300 kW</td>
<td>65 à 70%</td>
<td>40 à 50%</td>
<td>30 à 40%</td>
<td>5 à 15%</td>
<td></td>
</tr>
<tr>
<td>300 à 1000 kW</td>
<td>45 à 65%</td>
<td>0 à 40%</td>
<td>0 à 30 %</td>
<td>0% à 5%</td>
<td></td>
</tr>
<tr>
<td>&gt; 1000 kW</td>
<td>30 à 45%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

Source : ADEME

(2) la géothermie


L’engouement suscité par cette nouvelle source d’énergie a laissé la place, à partir de 1986 – année du contre choc pétrolier - à une situation de crise avec l’apparition de difficultés techniques inhérentes à la jeunesse de cette filière et à une eau très chargée en sels minéraux dans un contexte économique et énergétique rendu beaucoup moins favorable. En outre, nombre de ces projets reposaient sur la garantie d’un écart minimal de 5% entre le prix de la chaleur fournie et le prix du pétrole, ce qui a provoqué de graves difficultés financières lorsque le prix du pétrole a diminué.

Progressivement les difficultés techniques ont été résolues et le dynamisme des collectivités locales assurant la maîtrise d’ouvrage de ces opérations allié aux aides de l’Etat a finalement permis, par des actions d’optimisation et de développement, de stabiliser la compétitivité des opérations face à la concurrence des énergies fossiles et en particulier du gaz. Il faut souligner ici à quel point la concurrence entre les grands réseaux de gaz et d’électricité, d’une part, et les réseaux de chaleur gérés par des collectivités locales a été un facteur de régression pour la géothermie.

En 1995, l’Etat, constatant que le Fond Court Terme n’était plus utilisé (plus de nouvelles réalisations) décida de le supprimer.
Aujourd'hui, après plus de 20 ans d'exploitation, il subsiste 34 opérations en fonctionnement, soit environ 2/3 des opérations réalisées entre 1980 et 1986. Le taux de disponibilité annuel des opérations en fonctionnement dépasse 95%, ce qui montre bien la maturité technique atteinte par la géothermie.

De plus, grâce notamment à une politique d’incitation aux raccordements de nouveaux abonnés soutenue par l’ADEME et la Région Ile de France, plus de 12 000 équivalents logements supplémentaires se sont raccordés aux réseaux existants ces dernières années. Ces extensions n’ont pu se faire que parce que le prix proposé aux nouveaux abonnés était compétitif par rapport aux autres énergies.

Actuellement, le coût complet (amortissement, frais financiers, entretien, exploitation) du MWh géothermique à l’entrée d’un réseau de chaleur est estimé entre 12 et 15 € (Jean Lemale, ADEME 2003). La géothermie est donc prête pour une relance à condition de reconstituer le Fond de Garantie Court Terme, ce qui est en cours.


### Tableau n° 7 : Production de chaleur

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>11</td>
<td>110</td>
<td>132</td>
<td>124</td>
<td>126</td>
<td>128</td>
<td>128</td>
<td>119</td>
<td>130</td>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>

Unité : ktep – (e) = estimé

*Source : DGEMP – Observatoire de l’énergie*

(3) le solaire thermique

Répandu dès avant le 1er choc pétrolier dans certains pays, le solaire thermique a suscité beaucoup d’espoir pour la production d’eau chaude. Il s’est développé en France sous l’impulsion de plusieurs dizaines de fabricants de toutes tailles. Le prix élevé de l’énergie et les incitations fiscales étaient les raisons de ce développement. Le marché était en 1980 de 63 000 m2/an et a progressé jusqu’en 1985 avec 90 000 m2/an avant de s’effondrer à 23 000 m2/an en 1990. Ce n’est qu’en 1996 avec le lancement du programme « 20 000 Chauffe eau solaires dans les DOM » et ensuite en 2000 avec le Plan Soleil en métropole que le marché s’est relancé pour atteindre un total de 180 000 m2/an en 2005 et plus de 200 000 m2 en 2006. Un chauffe eau solaire individuel (CESI) a une surface de 4 m2, ce qui est encore peu.

Pour l’avenir, les prix des CESI installés devraient pouvoir diminuer si une réelle concurrence s’instaure et que le marchéFrance reçoit une impulsion nouvelle. En effet, s’il y a concurrence entre les fabricants, ce n’est pas le cas entre installateurs sur un marché de 15 à 20 000 unités. Cette situation pourrait évoluer si la croissance continue comme le démontre l’expérience allemande.
(4) Biocarburants


Les coûts de production actuels des biocarburants, sortie usine, se situent entre 0,45 et 0,55 €/litre. A ces coûts de production, s’ajoutent les coûts liés à la distribution comprenant le stockage, le chargement et le transport, les biocarburants n’étant pas transportés par pipeline. Il faut également tenir compte de ce que le pouvoir calorifique de l’éthanol est des deux tiers de celui des carburants pétroliers. Le prix total qui en résulte est donc aujourd’hui encore plus élevé que celui des carburants pétroliers.

Ces coûts de production sont à comparer au cours normal de l’essence et du gazole qui est de l’ordre de 0,40 €/litre (prix sur le marché international de Rotterdam hors coûts de distribution). En juillet 2006, époque où le cours du baril a dépassé les 70 $/baril, les prix de l’essence et du gazole ont atteint près de 0,45 €/litre.

6. les enseignements à tirer

Les principales conclusions à tirer sont les suivantes :

- Une amélioration de la compétitivité des filières énergétiques à fort contenu technologique (éolien, solaire photovoltaïque), due à des efforts de R&D et un soutien au développement des marchés dans quelques pays (notamment Allemagne, Danemark, Espagne, Japon).
- Les filières chaleur EnR ont peu de marges de progression en termes économiques, mais la géothermie est déjà rentable, le bois énergie peut l’être dans certaines situations (industrie du bois) et n’en est pas loin pour le chauffage dans l’habitat collectif, le tertiaire et les réseaux de chaleur. Le solaire thermique a une marge de progrès dans les applications collectives, plus faible dans les applications individuelles. Ces progrès impliquent une meilleure structuration des filières professionnelles.
- La présence marginale de l’industrie française dans ces secteurs : pas de grands acteurs dans l’industrie éolienne, un industriel (Photowatt) dans le solaire photovoltaïque qui a survécu difficilement grâce au soutien continu de l’AFME-ADEME, un fabricant de chaufferies bois, 2 fabricants de capteurs solaires thermiques.

20 Fin 2005, la part de marché des constructeurs français VERGNET et JEUMONT sur le marché national s’élève à 11,8 %, ce dernier ayant arrêté courant 2005 la fabrication de ses machines J48
mêmes que l'IMRG (Institut Mixte de Recherche sur la Géothermie) créé plus tard à l'initiative du BRGM et de l'AFME.

La rentabilité économique des énergies renouvelables est handicapée tant qu'elle n'implique pas les externalités positives. Le soutien public reste encore nécessaire et son interruption entre 1986 et 2000, en période de bas prix du pétrole, a eu des effets désastreux sur le tissu industriel et sur l'ensemble des réseaux de compétences.

Un autre enseignement est le rôle, plutôt limité jusqu'à présent, des grands opérateurs énergétiques, particulièrement EDF et Gaz de France21. De ce point de vue, le système d'obligation d'économie d'énergie, assorti de la souplesse des échanges de certificats, sera probablement une incitation.

Un troisième enseignement est que les collectivités locales ont aussi un rôle décisif à jouer et qu'elles en ont de plus en plus souvent la volonté. L'implication en France des régions dans les Contrats de Plan sur ce sujet en est une bonne illustration.

Enfin, il convient de souligner que le tissu d'entreprises qui a survécu à la période 1986-2000 est très dynamique et peut être la base d'un nouvel essor industriel au vu de la dynamique actuellement développée en France.

21 même si l'on a pu constater une évolution chez EDF en fin de décennie 90 et plus récemment chez Gaz de France
III. Evolution des comportements et des opinions

A. L’évolution des opinions

1. quelques résultats des sondages d’opinion

D’une manière générale, les enquêtes d’opinion mettent en évidence une sensibilité des français aux problématiques énergie/environnement assez profondément ancrée et mûrie par rapport aux années 90. Plus précisément, c’est l’état de l’environnement au niveau de la planète qui préoccupe le plus la population qui nourrit des doutes sur la capacité du progrès scientifique et technique à résoudre les problèmes. Par exemple, un sondage récent (TSN SOFRES pour PQR 66, juillet 2006) met le réchauffement climatique au deuxième rang dans la hiérarchie des risques perçus comme les plus inquiétants pour l’avenir de l’humanité.

Si les « petits gestes au quotidien » qui « sauvent la planète » semblent passer dans les mœurs – tout au moins en déclaratif - il existe corrélativement une attente forte en la matière pour une aide concrète au passage à l’acte qui va bien au-delà de la simple sensibilisation. Pour autant une majorité de la population ne paraît pas prête à faire certains sacrifices tels qu’une baisse de confort ou un niveau de vie en diminution, pour la cause environnementale.

S’agissant de la perception par les français de l’accroissement de l’effet de serre et de ses effets, les enquêtes révèlent une montée en puissance de leurs préoccupations face à cette problématique et une relative prise de conscience de la responsabilité individuelle. Elles révèlent toutefois, en cohérence avec ce qui est dit plus haut, une vision plus tranchée sur les difficultés de réduire son confort au profit d’une menace à long terme, pour laquelle les individus se sentent moins concernés au quotidien.

- Sur les causes principales de l’accroissement de l’effet de serre : les français pointent du doigt plutôt les activités industrielles et les transports et dans une moindre mesure le chauffage des bâtiments, mais ce dernier thème a progressé fortement récemment.
- Sur les conséquences de l’effet de serre : instabilité du climat, tempêtes et canicules sont les risques redoutés.
- Sur comment y remédier : le salut n’est pas dans la technique (voir plus haut) mais dans les modifications de comportement.

Concernant les prix de l’énergie, les craintes de les voir augmenter ont aujourd’hui des niveaux jamais atteints pour le gaz et le fioul domestique alors qu’elles diminuent fortement pour l’électricité. La prise de conscience de la cherté de l’énergie sur le long terme est une donnée importante dans l’évolution des comportements liés à son utilisation. (baromètre CREDOC / DGEMP 2006)
Selon l’enquête "attitudes et pratiques environnementales des ménages / RCB conseil 2006" la propension à s’engager dans des actions d’économies d’énergie semble relever de trois mécanismes bien distincts :

Le premier mode qui caractérise les générations anciennes et les classes populaires semble inspiré à la fois par la nécessité pratique d’économiser des ressources pour les foyers peu aisés et sans doute par des habitudes acquises ou héritées de contextes économiques de pénurie (générations proches de la guerre ou de l’après guerre).

Le deuxième est celui qui concerne les foyers plus aisés et « dotés en capital culturel » : il répond à la notion actuelle d’économie d’énergie dont les motivations sont à la fois personnelles et altruistes.

Le troisième est celui des pratiques sociales : le fait d’avoir adopté des comportements concernant le tri sélectif des déchets entraîne des attitudes d’économies d’énergie. Ici, c’est le comportement qui entraîne des dispositions puis des pratiques favorables aux économies.

2. les enseignements à tirer

a) tenir compte de l’évolution des opinions pour organiser les actions de communication

Accompagner les mouvements d’opinion en faveur des actions d’économies d’énergie suppose donc de faire appel à des registres adaptés aux différentes catégories en combinant la mise en évidence des bénéfices individuels et collectifs, financiers et environnementaux que peuvent apporter ces comportements.

Le baromètre des valeurs des Français (TSN Sofres 2006) pointe dans les 10 tendances pour 2006 :
- le droit à l’insouciance,
- la fuite vers l’hyperconsommation,
- la confirmation de l’obsession narcissique,
- la « low cost » attitude,
- l’obsession de l’irrespect,
- la société émotionnelle,
- la valorisation de l’intelligence sensible,
- l’obsolescence de la culture,
- la perte des dernières illusions.

Il souligne l’émergence d’une prise de distance des individus qui semble liée « à un phénomène de compensation par rapport à une situation difficile ». Il peut s’ensuivre des conduites individuelles privilégiant à la fois la recherche de refuges et de protection et des phénomènes de compensation dans l’hyperconsommation, le « carpe diem ». Ces tendances sont à prendre en compte dès lors qu’on veut communiquer pour faire avancer les prises de consciences se traduisant en actes concernant l’énergie et l’environnement. Elles montrent par exemple :
- les dangers de discours catastrophistes et désespérés sur l’augmentation de l’effet de serre, qui peuvent conduire à produire l’effet inverse de celui escompté (« puisque c’est perdu, profitons de tout sans contrainte »),
la nécessité d’inscrire les messages dans les actes et sur les lieux de consommation : il faut travailler activement avec la grande distribution notamment ;

- l’intérêt des énergies renouvelables comme réponses à la recherche de sécurité (« j’assure mon avenir énergétique »).

b) développer toutes les formes de mise à disposition d’informations sur l’énergie

L’énergie est un sujet complexe, fortement évolué et très mal connu de nos concitoyens. Leur intérêt pour le sujet se développe lorsque les prix augmentent ou que des crises internationales suscitent des inquiétudes sur les approvisionnements. Aujourd’hui, les problématiques environnementales et de lutte contre le changement climatique créent de nouveaux besoins d’information et d’explication.

- les programmes de l’éducation nationale doivent mieux intégrer ces sujets ;

- des documents explicatifs adaptés à chaque « cible » doivent être élaborés et facilement disponibles pour les utilisateurs visés. Ils doivent permettre à la fois de comprendre les raisons des évolutions des questions énergétiques mais aussi de faire les bons choix et d’adopter les bonnes pratiques. Il s’agit donc d’être capable de donner des informations très opérationnelles. L’ADEME travaille dans ce sens avec le soutien de nombreux partenaires ;

- la multiplication des débats publics consacrés à des sujets « énergétiques » (déchets nucléaires, EPR, interconnexion...) permet d’aborder les problématiques énergétiques à partir de sujets concrets et participe à la formation progressive des opinions sur ces thèmes.

B. L’évolution des comportements

Les analyses des chapitres précédents ont déjà permis d’aborder le sujet de l’évolution des comportements. Certains aspects ne seront donc que brièvement évoqués dans le présent chapitre.

1. les évolutions de long terme liées au mode de vie

Le chapitre II a montré les importantes modifications de la demande d’énergie depuis le début des années 70. L’évolution de notre mode de vie a eu des conséquences importantes sur nos consommations énergétiques :

- développement des équipements consommant de l’énergie : électroménager, électronique, HiFi…
- taille et nombre de logements
- développement des loisirs et ses conséquences sur les transports
- éloignement domicile-travail et étalement urbain
- organisation du commerce et de la distribution
- généralisation du flux tendu plutôt que du juste à temps …
- augmentation de la température de chauffage des logements
Mais il est difficile de déterminer la part de l’abondance et du prix des énergies dans le développement de ces modes de vie eux-mêmes.

L’effet de l’augmentation du pouvoir d’achat résultant de la croissance qui réduit la place des dépenses énergétiques dans les budgets individuels, associé et renforcé par la diminution du prix de l’énergie sur les 30 dernières années a en effet rendu possible et encouragé une grande partie des évolutions de notre mode de vie ; c’est le cas notamment de l’évolution de notre urbanisme ou de la logistique des entreprises, et même d’une partie de la mondialisation liée à la délocalisation des activités, facilitée par le faible prix des transports.

2. les changements de comportements sous contraintes

Contrairement à ce que pensent souvent nos décideurs, notamment politiques, les consommateurs sont capables de changer de comportements lorsqu’ils doivent s’adapter à une évolution majeure, et qu’ils pensent durable, de leur environnement et du contexte économique. Ce point a également été abordé au chapitre III quand le sujet de l’élasticité prix a été abordé.

Mais il ne faut pas oublier que ces évolutions se font dans les deux sens et qu’il est plus facile d’adapter son comportement à une situation d’abondance et de prix faible que l’inverse. Il n’y a pas « d’effet de cliquet » en matière de comportement.

3. les motivations des changements

Prix
Protection de l’environnement
Anticipation d’une pénurie

Effets seconds d’une autre politique qui peuvent avoir des conséquences contradictoires. Par exemple, en matière de sécurité routière :
- la limitation de la vitesse réduit les consommations
- la multiplication des dispositifs de sécurité passive augmente la masse des véhicules, et donc leur consommation
- les protections pour limiter les conséquences des chocs piétons dégradent le Cx et augmentation la consommation de carburant sur route

4. les enseignements à tirer

a) une connaissance insuffisante des mécanismes d’évolution des comportements à court/moyen/long terme

Il faut plus développer les recherches et les études socio-économiques pour mieux connaître les causes et les conséquences des changements de comportements et intégrer ces résultats dans les exercices de prospectives énergétiques et dans les déterminants des politiques énergétiques.

b) l’évolution à moyen/long terme des comportements peut profondément modifier les besoins énergétiques et réciproquement

Les exercices de prévisions de ces dernières années de même que les politiques énergétiques mises en place sous-estiment les possibilités de changements de
comportement à moyen/long terme, qu’ils soient, ou non, liés au prix, à la quantité ou à la forme de l’énergie utilisée. Or, non seulement ces changements peuvent avoir des effets majeurs sur les besoins énergétiques mais on peut aussi tenter de modifier les besoins en faisant changer les comportements et les modes d’organisation qui en découlent.

Ainsi, par exemple, le vieillissement de la population, conséquence de l’évolution démographique et des progrès de la médecine, peut engendrer une augmentation moyenne des températures de chauffage, les personnes âgées étant souvent frileuses.

Ces changements de comportements peuvent également résulter de l’introduction d’une nouvelle technologie\textsuperscript{22}. Il ne faut donc pas considérer que les évolutions technologiques se font « toute chose égale par ailleurs » ; à terme, plus ou moins long selon les cas, elles ont des conséquences importantes sur nos modes de vie et donc sur nos besoins.

c) la variété des déterminants des changements de comportements doit être prise en compte dans les politiques énergétiques

Pour être efficace, la politique énergétique peut utiliser différents éléments qui orientent les comportements des consommateurs :

- le prix est le critère de choix le plus immédiat ; les consommateurs sont très sensibles à son évolution réelle ou supposée, même si c’est souvent avec un certain effet retard. C’est pourquoi il faut éviter de fausser ou de réduire cet effet. Au contraire, on peut le renforcer par des mécanismes adaptés de fiscalité par exemple.

- La protection de l’environnement, notamment la lutte contre le changement climatique, mais il ne faut pas oublier non plus la pollution de l’air. Seule une petite partie de la population aujourd’hui change ses comportements en matière d’énergie en tenant compte uniquement de cet argument. Mais cette proportion grossit et, surtout, cet argument vient renforcer les raisons « économiques » d’agir pour beaucoup d’autres consommateurs.

- D’autres facteurs ne doivent pas être négligés. L’amélioration de la sécurité routière, par exemple, est passée par un meilleur contrôle de la vitesse qui a globalement conduit à une réduction des consommations. Ces politiques à doubles gains doivent être recherchées et développées.

d) la mise à disposition de l’information sur les consommations énergétiques, facteur indispensable des évolutions de comportements

Les consommateurs sont très généralement mal informés sur leur consommation d’énergie. Leur intérêt pour ces sujets ne s’éveille qu’en période d’augmentation des prix. Il est donc important de leur fournir cette information de manière continue et précise pour chacune de leurs actions ayant des conséquences en matière d’énergie.

- C’est l’objectif des étiquettes énergie qui ont d’abord été utilisées pour certains équipements électroménagers (ampoules, réfrigérateurs, lave linge...) et qui ont été généralisées en 2006 aux véhicules et aux logements (aux ventes à partir du 1\textsuperscript{er} novembre 2006 et aux locations à partir du 1\textsuperscript{er} juillet 2007). En ce

\textsuperscript{22} : cf. par exemple le développement du téléphone portable ou d’Internet et leurs conséquences sur nos modes de vie et de travail.
qui concerne les logements, l’étiquette sera accompagnée d’un diagnostic de performance énergétique qui donnera aussi des recommandations de travaux à faire.

- Cela passe aussi par la généralisation des compteurs sur toutes les consommations, même avec des systèmes de chauffage collectif, ou de dispositif d’information sur les consommations instantanées, par exemple dans les véhicules.

- D’une manière plus générale, il faudrait généraliser les approches en « coût global », intégrant, en matière d’énergie, le coût des investissements et le coût du fonctionnement, de manière à pouvoir prendre en compte systématiquement les conséquences des choix des consommateurs.


e) les conditions de réussite des campagnes de communication sur l’énergie

Au-delà de la nécessaire pertinence et de l’efficacité requise pour les actions de publicité en termes de messages et de choix de média, l’analyse du passé nous montre que trois conditions sont requises pour qu’une action destinée à toucher et à mobiliser le plus grand nombre soit réellement efficace :


- La capacité de répondre au questionnement que la communication suscite : c’est bien la raison d’être du réseau des conseillers INFOENERGIE : fournir au public une information de qualité, neutre, gratuite et des outils de communication mais face à l’intérêt suscité par ces sujets aujourd’hui il faut veiller à adapter la taille des réseaux capables d’y répondre.

- Il faut une mobilisation de tous pour que les messages passent véritablement dans l’opinion et les comportements : l’efficacité des actions sera d’autant plus grande que le citoyen/consommateur sera convaincu que tout le monde se mobilise : collectivités locales, entreprises, associations professionnelles, associations de consommateurs et de protection de l’environnement... tous doivent se retrouver au-delà de leurs différences autour du thème consensuel que sont les économies d’énergies et la lutte contre l’accroissement de l’effet de serre. La prise de conscience du « tout le monde s’y met car le sujet est maintenant crucial » est un levier d’ entraînement évident.

Le dispositif de communication « économies d’énergie, faisons vite, ça chauffe » mis en œuvre par l’ADEME actuellement veut conjuguer ces trois exigences. Toutefois les moyens qui y sont consacrés sont réduits par rapport aux budgets nécessaires pour soutenir de grandes campagnes dans le contexte publicitaire actuel.
f) des entraves aux modifications des comportements

Des entraves liées à des systèmes de prises de décision inadaptés :

- Difficultés de mises en œuvre des actions d’économies d’énergie dans des copropriétés
- Difficultés de faire faire des travaux d’économie d’énergie à des propriétaires quand ils ne sont pas assurés de pouvoir en faire supporter le coût à leurs locataires, qui va pourtant en bénéficier par des économies sur ses charges.

(à compléter et développer)
IV. Politiques publiques

A. Les actions de communication, dimension essentielle des politiques publiques

1. Rapide historique des actions de communication depuis 1974

Les actions de communication conduites depuis 30 ans en faveur de la maîtrise de l’énergie ont utilisé toute la palette des outils existants :
- campagnes « grand média » pour toucher le plus grand nombre
- campagnes ciblées sur des secteurs ou des acteurs particuliers
- développement des relations presse
- politique active de relations publiques
- éditions, brochures, colloques
- actions d’information en partenariat avec des réseaux de professionnels
- promotion des procédures d’aides, avantages fiscaux, etc.

Selon les années, les programmes ont privilégié tel ou tel type d’actions en fonction des contextes économiques (« chocs pétroliers » notamment), des budgets disponibles et des stratégies mises en œuvre par les équipes des agences en charge des politiques de maîtrise de l’énergie qui se sont succédées :
- l’Agence pour les Economies d’Energie (AEE) de 1974 à 1982,
- l’Agence Française pour la Maîtrise de l’Energie (AFME) de 1982 à 1992,

Les périodes durant lesquelles ont été mises en place les plus importantes campagnes média - utilisant en particulier la télévision - sont celles qui ont le plus marqué les esprits :
- De nombreuses actions de communication sont organisées entre 1974 et 1979 par l’AEE dans le contexte des « chocs pétroliers ».

Des messages « chocs » sont alors diffusés à l’aide de spots TV qui sont encore aujourd’hui dans toutes les mémoires. « En France, on n’a pas de pétrole mais on a des idées » : c’est l’époque des premiers grands colloques organisés par des partenaires professionnels, de la production des premières documentations grand public à grande diffusion, des campagnes en partenariat avec la météo. Le registre de communication est alors le risque de pénurie de produits pétroliers et de la nécessité de les économiser, alors que nos économies en sont très fortement dépendantes. En 1979, le programme de communication « monte d’un cran » : la campagne de communication « La chasse au gaspi » remporte un grand succès et marque l’imagination de tous, notamment des enfants de l’époque qui, adultes, s’en souviennent encore.

- Avec la création de l’AFME en 1982, les stratégies de communication donnent, dans un premier temps, la priorité à l’information et à la promotion des procédures et des aides plutôt qu’à des campagnes de publicité.

Il s’agit aussi de communiquer sur des opérations groupées comme les « villes pilotes » consistant à faire l’expertise thermique de tous les bâtiments (11 villes seront concernées). L’information du public se fait notamment en collaboration avec les Agences d’Information sur le Logement (ANIL). Pourtant, en 1985,
alors que le prix du pétrole accuse une baisse sensible, les dirigeants de l’époque, craignant (à juste titre) un relâchement des comportements, décident de relancer les campagnes grand public avec un slogan « Maîtrise de l’énergie, pas si bête » qui préfigure les communications sur le développement durable, concept alors inconnu.

- Entre 1987 et 1991, l’effort porte sur la mobilisation des réseaux de partenaires (chauffagistes, grossistes en matériels, producteurs d’énergie) pour diffuser les messages. Le contexte de la guerre du Golfe conduit à renouer avec une grande campagne de communication.


- En 2000, à la suite d’un conflit des routiers avec blocages des raffineries et une forte augmentation des prix des produits pétroliers, les pouvoirs publics mettent en œuvre le Programme National d’Amélioration de l’Efficacité Énergétique qui compte un volet de communication important.

Dans ce cadre, une campagne de communication s’appuyant sur l’image de l’acteur Fabrice Luchini est lancée en 2001. Avec le slogan « Préservez votre argent, préservez votre planète », elle veut démontrer qu’intérêt personnel et intérêt collectif peuvent se rejoindre pour adopter des comportements plus « citoyens » contribuant à la limitation de l’accroissement de l’effet de serre.

- Fin 2002, le réseau d’information de proximité des Espaces Info Energie construit en partenariat avec les collectivités territoriales et les associations, est opérationnel sur toute la France (140 points d’informations).

Une campagne de communication est mise en œuvre avec pour objectif de mieux le faire connaître auprès des cibles d’usagers (principalement grand public) mais aussi de partenaires (associations de protection de l’environnement et de consommateurs, organismes professionnels, grands opérateurs du secteur de l’énergie, collectivités territoriales etc.).

- Depuis mai 2004, une nouvelle campagne de communication grand public, utilisant la télévision et la radio et associant les préoccupations de lutte contre le changement climatique et d’économies d’énergie a été lancée par l’ADEME. Elle est signée « Économies d’énergie. Faisons vite, ça chauffe ». Son principe a été arrêté dans le cadre du plan climat de 2004 et doit durer au moins 3 ans. Elle repose sur l’ensemble des outils mis en œuvre précédemment (Espace Info Energie, numéro Azur, site Internet) et a pour objectif de susciter la réalisation d’opérations de sensibilisation sur le terrain, grâce à la multiplication de partenariat avec des entreprises, des collectivités territoriales et des associations.
2. **les moyens financiers consacrés à ces actions**

Ainsi, l’ADEME mobilise depuis 4 ans un budget de communication dédié aux actions de maîtrise de l’énergie de l’ordre de 11M€. Il est intéressant de comparer cet effort à ce qui a été fait dans le passé.

- Sur la période 1974/1982, nous ne disposons pas de l’information précise sur les budgets engagés mais il ne fait aucun doute que la période « Chasse au Gaspi » a mobilisé d’importants budgets, supérieurs à ceux d’aujourd’hui.


**Tableau n° 8 : Budget des actions de communication en millions euros constants**

<table>
<thead>
<tr>
<th>Année</th>
<th>Budget (millions euros constants)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>17</td>
</tr>
<tr>
<td>1983</td>
<td>15</td>
</tr>
<tr>
<td>1984</td>
<td>13,6</td>
</tr>
<tr>
<td>1985</td>
<td>13,6</td>
</tr>
<tr>
<td>1986</td>
<td>10</td>
</tr>
<tr>
<td>1987</td>
<td>11,7</td>
</tr>
<tr>
<td>1988</td>
<td>11,7</td>
</tr>
<tr>
<td>1989</td>
<td>10,6</td>
</tr>
<tr>
<td>1990</td>
<td>15</td>
</tr>
<tr>
<td>1991</td>
<td>17</td>
</tr>
<tr>
<td>1992</td>
<td>16</td>
</tr>
</tbody>
</table>

(valeur 2006)


Or, dans le domaine des campagnes publicitaires « grand média », le volume des investissements publicitaires s’est fortement accru de manière ininterrompue depuis 30 ans (multiplié par 20 entre 1975 et aujourd’hui). Cette croissance est soutenue par une multiplication de l’offre de média au premier rang desquels la télévision. On constate ainsi deux tendances fortes auxquelles lesannonceurs doivent s’adapter :

- une « fragmentation des audiences qui se dispersent sur un nombre toujours plus grand de supports » ;
- une augmentation des coûts des média de masse (principalement TV et radio) qui nécessitent ainsi une « prime » à l’accès à l’audience.

Cela signifie, pour des campagnes d’intérêt général comme celles en faveur des économies d’énergie, que même avec des budgets modestes on pouvait toucher, à la fin des années 70, un large public en utilisant seulement trois chaînes (la 3ème chaîne a été lancée en 1972) et que leur impact était plus facilement garanti compte tenu d’une concurrence bien moindre de messages proposés aux consommateurs. À l’inverse, aujourd’hui, pour « exister » sur les grands média en termes de campagnes publicitaires, il faut des moyens financiers bien supérieurs à ce qui était nécessaire dans le passé, alors que les moyens publics consacrés aux campagnes sur les économies d’énergie ont sensiblement diminué.

3. **quelques résultats**

En octobre 2005, 71 % des Français se déclarent concernés par les économies d’énergie, contre 63 % en 2002 (Source : baromètre sur l’énergie, Ifop pour MINEFI, novembre 2005). Les « bons gestes » sont mieux assimilés et les achats d’appareils performants sont plus nombreux. La hausse actuelle des prix de l’énergie est un facteur important dans cette prise de conscience, mais on peut aussi attribuer une partie de ce phénomène à la réussite de ces efforts de communication.

À propos des équipements électrodomestiques, on peut signaler le succès de l’étiquette énergie. Mise en place depuis 1992 au niveau européen, elle concerne aujourd’hui de nombreuses catégories de produits : réfrigérateurs / congélateurs,
lave-linge, ampoules,... Classant les appareils des plus efficaces (A, ou même A+ et A++, pour les plus économiques à G pour les plus énergétivores), elle est aujourd'hui connue par deux Français sur trois et a une influence forte sur le choix des produits pour 52 % des achats concernés (source TSN / SOFRES 2004 pour ADEME). L’incitation au choix d’appareils performants est particulièrement essentielle, alors que les consommations unitaires moyennes des usages spécifiques de l’électricité ont progressé de plus de 75 % en 25 ans, passant de 13 kWh/m² à 23 kWh/m². Cette progression est due notamment à de nouveaux « produits bruns » (bureautique, multimédia,...) et à leur consommation d’énergie, souvent inutile, en veille.


B. Les politiques de réduction de la demande


1. après le 1er choc pétrolier

Avant 1973, l’État ne lançait que des programmes de production d’énergie. Le choc pétrolier a provoqué le lancement, en mars 1974, de nouvelles politiques qui portaient désormais sur la demande, mais tout était à inventer et l’appareil d’État n’avait pas d’expérience dans la conduite de politiques publiques de gestion de la demande qui nécessitait une participation active des consommateurs. Les principales mesures prises à cette époque sont rapidement évoquées ci-après.

a) création d’un dispositif politico-administratif original :

Tableau n° 9 : Evolution des moyens de l’agence dans le domaine de l’énergie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectifs</td>
<td>12</td>
<td>35 + 55 fuel lourd</td>
<td>100 + 55 fuel lourd</td>
<td>251 dont 72 DRIRE 25 CETE</td>
<td>578</td>
<td>393</td>
<td>370</td>
<td>525</td>
</tr>
<tr>
<td>Budget intervention en monnaie courante</td>
<td>31 MF</td>
<td>200 MF</td>
<td>690 MF</td>
<td>834 + 602 FSGT = 1 436 MF</td>
<td>474 MF</td>
<td>741 MF</td>
<td>135 M€</td>
<td></td>
</tr>
<tr>
<td>Budget intervention en € 2006</td>
<td>19 M€</td>
<td>92 M€</td>
<td>222 M€</td>
<td>332 M€</td>
<td>94 M€</td>
<td>124 M€</td>
<td>135 M€</td>
<td></td>
</tr>
</tbody>
</table>

Source : ADEME

b) les actions mises en œuvre

L’agence a été le pivot de l’élaboration et de la mise en œuvre de la politique d’économie d’énergie déployée à cette époque. Ses interventions ont été dès l’origine très variées, ses moyens d’intervention étant très larges.

- Des actions d’information et de communication

L’agence a lancé de nombreuses campagnes d’information à la télévision, à la radio et dans la presse pour donner des conseils et convaincre la population d’économiser l’énergie en engageant des investissements, pour faire connaître les mesures de soutien existantes :
  * « on n’a pas de pétrole mais on a des idées »
  * 1979 : « la chasse aux gaspards »

Des messages étaient diffusés dans les bulletins météo TV en fin et en début de saison de chauffage pour indiquer, régionalement, ce qu’il fallait faire en matière de chauffage. En 1975, est créé un service « INF économies d’énergie » pour répondre aux questions du public (courriers et téléphone).

L’agence édite par ailleurs de multiples documents et brochures et mène une politique de relations presse et de relations publiques (colloques, expositions, salons) très active. Des réseaux « relais » sont constitués comme l’ATEE (association technique pour les économies d’énergie).

- Des mesures réglementaires visant à réduire la consommation

Entreprises :
Le contrôle de la publicité mensongère a perduré de 1974 à 1982 : les agréments aux campagnes publicitaires compatibles avec la politique d’économies d’énergie étaient accordés par une commission ad hoc. Les refus ont été aussi nombreux que les agréments et des sanctions étaient effectivement prises.

L’examen périodique des établissements gros consommateurs d’énergie par des experts agréés pour identifier les gisements d’économies d’énergie a été une mesure très efficace ; les rapports étaient adressés aux DRIRE et à l’agence pour que des suites y soient données.
**Bâtiment** :
La température intérieure des locaux publics a été limitée à 20° en 1974, à 19° ensuite.

La première réglementation thermique est arrêtée en 1975 ; elle imposait des normes d'isolation dans les bâtiments neufs.

La modification de l'heure légale par décret et la création de l'heure d'été permettaient un gain estimé à 350 000 tep par an.

L'éclairage des magasins après 22h est interdit et celui des bureaux régiementé.

Dès 1975, dans le cadre d'un accord volontaire conclu avec l'Agence, les constructeurs français d'appareils électroménagers et de chauffage se sont engagés à poser sur leurs appareils une étiquette indiquant leur consommation d'énergie. Un décret de 1976 n'autorisait les campagnes publicitaires que pour les appareils munis de cette étiquette.

**Transports** :
La publicité pour les véhicules doit indiquer la puissance, les performances et les consommations.

Des limitations de vitesse sont instituées.

- Les taxation
En octobre 1975 est mise en place une taxation des surconsommations de fuel lourd utilisé par les gros consommateurs, sous la forme d'une taxe parafiscale versée à la caisse nationale de l'énergie associée à un système de prime aux investissements économisant l'énergie. (1977 : primes pour 1 257 MF d'investissement, soit 1Mtep/an d'économie à un coût de 1 259 F/tep économisée par an). La taxe pouvait être suspendue en cas d'accord entre l'Agence et les branches professionnelles. En 1976, 17 accords sont signés dans 23 branches et 14 en 1977, soit au total 85% des consommations d'énergie dans l'industrie.

- Les mesures de contrôle du respect des règlements
Dès 1975, l'agence met en œuvre, systématiquement, des procédures de contrôle du respect des règlements, assurés, pour les plus importants, par des experts indépendants nommés par les pouvoirs publics.

- Les mesures incitatives
**Soutien à l'innovation et aux entreprises**
En 1975, sont créées les « opérations de démonstration », qui visent à aider les premières réalisations en vraie grandeur chez un utilisateur pour un matériau dont la diffusion est susceptible d'engendrer à l'échelle nationale des économies d'énergie importantes. Le soutien financier apporté par l'agence est modeste au début (44 opérations en 1975, 76 en 1976) et se développe ensuite, après le second choc pétrolier.
Après le second choc pétrolier, le soutien aux « opérations d'innovation » (70% du coût) se développe et vise la mise au point de matériels et procédés nouveaux et très performants dont la commercialisation est également aidée.

Pour accompagner le processus d'industrialisation jusqu'à son terme, les aides à l'innovation et à la démonstration sont complétées par une procédure d'aide à la pénétration et à la diffusion des équipements économies et nouveaux, destinés aux secteurs de l'industrie et de l'habitat-tertiaire.

En 1979, la procédure d'aide systématique « 400F par tep » consiste à subventionner les investissements d'économies d'énergie à hauteur de 400F par tep économisée annuellement, à condition qu'un diagnostic préalable rigoureux soit fait et qu'un contrôle soit effectué après travaux.

Dans les transports, l'agence aide financièrement la pose de déflecteurs sur les poids lourds (temps de retour : 3 mois).

L'agence lance dès 1975, quelques grandes opérations de valorisation des rejets thermiques industriels : Eurodif, raffineries…

Soutien aux particuliers
A partir de 1976, les particuliers bénéficient de subventions, de déductions fiscales ou de prêts à taux faibles (1%) pour les travaux d'isolation et les changements de chaudière.

Le financement en crédit bail des investissements économisant l'énergie est également lancé mais il peine à démarrer.

c) Les succès et les échecs de cette politique

En 1979, le second choc pétrolier provoque le décollage des investissements d'économie d'énergie : 2,8 milliards de francs d'investissements sont aidés en 1979 contre 600 millions les années précédentes. Grâce à la taxation, l'agence peut utiliser environ 400MF par an pour financer les investissements dans l'industrie, l'opération des 400F/tep économisées ayant un grand succès.

Fin 1976, 81% des français connaissent la campagne d'information « on n'a pas de pétrole mais on a des idées ».

Dans le domaine des transports les recherches concernant l'amélioration immédiate des consommations des véhicules se sont traduit par trois programmes distincts :
- un programme de court terme, basé sur une meilleure utilisation des technologies existantes, a permis d'obtenir des gains de l'ordre de 30% que l'on a retrouvé très rapidement en grande partie sur les modèles commercialisés.
- un programme de recherche (« voitures 3 litres ») destiné à tester différentes solutions techniques tant en ce qui concerne la motorisation que l'architecture du véhicules (matériaux, structure, aérodynamisme,...) sans critère de coût. Ils ont permis de faire progresser significativement les nouvelles générations de véhicules
- un programme de véhicule industriel orienté sur le poids lourd grand routier dit « maxicode » a permis des progrès significatifs sur la motorisation,
l’aérodynamique et le confort et l’ergonomie des cabines : ceci s’est traduit par une diminution significative des consommations de ce type de véhicule.

Enfin la politique d’audit des flottes et de contrat d’entreprise avec les entreprises de transports routiers et maritime a permis, avec plus de 600 audits et 300 contrats, de toucher les plus importantes entreprises du secteur. Ceci a été complété par l’édition d’une cinquantaine de fiches techniques donnant bilan d’actions concrètes mise en place dans les entreprises et largement diffusée et appréciées par la profession.

A l’inverse, certaines actions n’ont pas eu le succès attendu.

La procédure de crédit bail, pourtant séduisante, le paiement du loyer pouvant être totalement compensé par les économies d’énergie réalisées, ne décolle qu’avec la création des Sofergies en 1980.

Dans le domaine des transports, l’opération lancée avec les constructeurs automobiles, de développement des indicateurs de bord affichant en temps réel la consommation instantanée de carburant, a été un échec. De même, on peut regretter que l’ensemble des résultats obtenus dans le cadre des programmes « voitures 3 litres », ne se soit pas traduit par la commercialisation de véhicules économiques d’entrée de gamme.

Dans le domaine de la production d’énergie, tous les objectifs poursuivis n’ont pas été atteints. S’agissant de la cogénération, EDF, mobilisé par le développement massif de son parc nucléaire, ne s’est pas investie dans le développement de la cogénération entre 1975 et 1985. Plus récemment, la cogénération a connu un développement rapide sous l’effet des obligations d’achat. Les premières tentatives pour développer les pompes à chaleur se sont soldées par un échec, malgré l’intérêt réel de certains, du mouvement HLM en particulier, notamment du fait de difficultés de structuration de la filière et d’organisation de la maintenance. Quand ces problèmes ont commencé à être surmontés, le contre-choc pétrolier était survenu et l’équation économique de la pompe à chaleur avait cessé d’être favorable.

2. **la période du contre-choc pétrolier**

(à compléter)

3. **le début du 21ème siècle**

(à compléter)

4. **Les résultats en matière d’efficacité énergétique**

Politiques publiques

En 1979, une accélération notable est obtenue grâce aux comportements plus économes qui répondent à la relance des actions de communication de l’agence et au décollage des investissements d’économies d’énergie. Cette évolution se poursuit pendant 8 ans.

De 1973 à 1990, l’intensité énergétique baisse de 26% ; cette évolution est différenciée selon les secteurs :
- forte dans le secteur industriel : - 38,8%
- limitée dans le résidentiel : -10,3%
- faible dans le secteur des transports : -5,5%

Les progrès commencent à faiblir dès 1987. Ainsi, en 1990 elle ne diminue que de 0,5% alors que la baisse moyenne entre 1976 et 1986 est d’environ 2%.

A partir de 1990, l’intensité énergétique cesse de diminuer, voire se remet à croître pendant quelques années puis recommence à baisser après 1995. Les évolutions des 3 secteurs entre 1990 et 1997 sont encore une fois très différentes :
- l’intensité énergétique ne cesse pratiquement pas de diminuer dans le secteur industriel ;
- elle diminue également dans le secteur résidentiel et tertiaire mais la pente moyenne de la courbe est plus faible et elle a augmenté entre 1990 et 1994 ;
- les résultats les plus mauvais sont ceux du secteur des transports : après avoir baissé jusqu’en 1985, leur intensité énergétique augmente ensuite jusqu’en 1993 et ne diminue que très faiblement ensuite.

(+ commentaires évolutions récentes : graphique et tableaux ci-dessous)

**Graphique n°21 : Intensité énergétique**
Indice base 100 en 1973

![Graphique Intensité énergétique](image)

**Tableau n°10 : Evolution de l’intensité énergétique en France (deux périodes)**

<table>
<thead>
<tr>
<th>Intensité énergétique (TCAM)</th>
<th>1973-1990</th>
<th>1990-2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie</td>
<td>-3,8%</td>
<td>-1,8%</td>
</tr>
<tr>
<td>Résidentiel-Tertiaire</td>
<td>-2,3%</td>
<td>-0,9%</td>
</tr>
<tr>
<td>Transports</td>
<td>+0,1%</td>
<td>-0,6%</td>
</tr>
<tr>
<td>Tous secteurs</td>
<td>-2,2%</td>
<td>-1,1%</td>
</tr>
</tbody>
</table>
**Tableau 2 : Evolution de l'intensité énergétique en France (trois périodes)**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie</td>
<td>-4,9%</td>
<td>-2,2%</td>
<td>-1,9%</td>
</tr>
<tr>
<td>Résidentiel-Tertiaire</td>
<td>-3,2%</td>
<td>-0,9%</td>
<td>-1,1%</td>
</tr>
<tr>
<td>Transports</td>
<td>-0,2%</td>
<td>+0,4%</td>
<td>-1,2%</td>
</tr>
<tr>
<td>Tous secteurs</td>
<td>-3,1%</td>
<td>-0,9%</td>
<td>-1,4%</td>
</tr>
</tbody>
</table>

*Source : Observatoire de l’énergie (DGEMP).*

En résumé, tous secteurs confondus, la baisse de l'intensité énergétique en France a été en moyenne de -3,2% par an de 1973 à 1982, mais s’est considérablement ralentie depuis : -1,1% par an de 1982 à 1990 et seulement -0,9% depuis 1990. La loi de programme du 13 juillet 2005 fixe pour objectif que le rythme annuel de baisse de l’intensité énergétique finale soit porté à –2% par an d’ici à 2015 et à –2,5% par an d’ici à 2030.

5. Les enseignements à tirer

   a) la nécessité d’un soutien politique fort

   Après le premier choc pétrolier, la politique nouvelle et très efficace de maîtrise de l’énergie n’a pu être menée à bien que parce qu’il y avait un engagement politique fort sur ces sujets, au plus haut niveau de l’État. Tout au long de son septennat, Valérie Giscard d’Estaing a promu et soutenu fermement la politique d’économies d’énergies et ses principaux collaborateurs font de même : Michel d’Ornano, Raymond Barre, André Giraud.

   La conviction et les messages forts des hommes politiques sont une composante essentielle du succès dans ces domaines, pour deux raisons principales :

   - il faut convaincre les consommateurs et les producteurs de faire des efforts et il faut donc leur en expliquer les raisons si l’on souhaite qu’ils modifient leurs comportements. Dans ce domaine, l’action politique ne doit pas se limiter à la prise de “bonnes” décisions ; il faut que les acteurs économiques soient convaincus de leur nécessité car l’efficacité des mesures passe souvent par des décisions individuelles qui ne peuvent pas être imposées dans un système démocratique.

   - il s’agit d’agir à travers un grand nombre de politiques publiques diverses : politique du logement, politique du transport, politique industrielle, politique fiscale... La mise en œuvre d’une action efficace dans le domaine de l’efficacité énergétique passe par la cohérence de l’action publique dans tous les secteurs. Seul un engagement fort du gouvernement permet d’assurer cette cohérence.

   b) la pérennité des actions …

   L’évolution de l’intensité énergétique par secteur au cours des 30 dernières années et la situation actuelle dans certains domaines montrent que ces politiques doivent être
menées dans la durée. Les périodes de ralentissements des efforts font perdre une partie de l’efficacité des politiques menées antérieurement :
  - ainsi, la réglementation suscitée par l’agence pour inciter à économiser l’énergie a en partie été abandonnée et est tombée en désuétude. Il est rare, toutefois, que l’on revienne en arrière sur les mesures réglementaires fixant des normes ou des seuils à ne pas dépassés, mais on ne les fait plus progresser au même rythme et l’on prend du retard par rapport au progrès technique ;
  - parallèlement, les « métiers » liés à la maîtrise de l’énergie se sont étiolés et la dynamique des politiques est aujourd’hui freinée par une insuffisance quantitative et qualitative de l’offre professionnelle, qu’il s’agisse des bureaux d’études ou des métiers du bâtiment ;

c) … menacée par l’évolution du prix de l’énergie…

Or, l’expérience de ces trente dernières années met également en évidence l’extrême sensibilité de ces politiques au prix de l’énergie, et plus spécialement à l’évolution du prix du pétrole, pour deux raisons :

Une raison « psychologique » : la diminution du prix de l’énergie qui est la résultante d’un retour à « l’abondance » fait très vite oublier aux acteurs économiques et politiques les risques encourus pendant la période de hausse précédente, ce qui conduit à relâcher l’attention sur ces sujets et donc une partie des mesures de contrainte ou d’incitation prises précédemment. Compte tenu du fait que l’effort dans ce domaine est lié, comme on vient de le dire, à la force de conviction des décideurs, leur retrait sur ces sujets est extrêmement pénalisant.

Une raison « économique » : la rentabilité des investissements économisant l’énergie s’affaiblit et conforte l’absence de motivation « psychologique ». Le cas des entreprises, qui ont probablement le comportement le plus économiquement rationnel, illustre bien cette situation : pendant les années 90, elles n’ont pas complètement arrêté de faire des investissements d’économies d’énergie mais se sont contentées, lorsqu’un équipement devait être changé, de le remplacer par un équipement plus performant en matière énergétique alors que dans les années 70 ou même aujourd’hui, le gain énergétique peut être lui-même la cause d’un changement d’équipement, même s’il n’est pas encore en fin de vie.

La forte variabilité du prix de l’énergie constitue donc une menace pour la pérennité des politique de maîtrise de l’énergie, les objectifs de sécurité et d’indépendance énergétique étant, eux aussi, progressivement perdus de vue au fur et à mesure que l’offre retrouve un niveau suffisant par rapport à la demande. Or, l’industrie énergétique étant très capitaliste, elle connait régulièrement des périodes de « sous » et de « sur » capacités responsables en partie des évolutions des prix eux-mêmes. Cela est observé sur les marchés pétroliers, libéralisés de longue date, et sur les marchés gaziers où les investissements très lourds en gazoducs et terminaux méthaniers se font parfois avec retard. Dans le secteur électrique, il est possible que la cyclicité, jusqu’alors « gommée » par les investissements lissés des monopoles historiques, s’accentue avec l’ouverture des marchés.
d) ... et confortée par la protection de l’environnement

A l’inverse, le souci de la protection de l’environnement peut assurer une certaine pérennité aux politiques de maîtrise de l’énergie. Ainsi, la conférence de Rio en 1992 a ranimé un certain intérêt pour ces politiques, les préoccupations de développement durable étant peu compatibles avec des modes de vie et de production reposant sur la consommation des énergies fossiles, du fait du caractère « fini » de ces ressources, même si ce terme est plus ou moins lointain. Les travaux faits sur la qualité de l’air ont également soutenu à l’époque un regain d’intérêt pour l’efficacité énergétique. Cela suppose cependant que la distinction entre pollution de l’air au niveau local et effet de serre soit correctement expliquée, notamment parce que les techniques de dépollution ont en général un coût énergétique de plus en plus élevé avec le niveau de dépollution requis.

Mais c’est surtout la signature du protocole de Kyoto et la progressive reconnaissance de l’importance des problématiques liées au changement climatique qui ont permis une véritable relance de ces politiques tant en France que dans la plupart des pays de la planète. La « durabilité » des efforts qu’il faudra faire pour réduire les émissions de gaz à effet de serre devrait désormais assurer une certaine « pérennité » aux politiques de maîtrise de l’énergie. Mais cela suppose que l’on explique bien aux acteurs économiques et aux citoyens les « deux bonnes raisons » de maîtriser l’énergie et que la communication sur ces sujets soit faite de manière conjointe et cohérente et non de manière alternative, en utilisant par exemple les arguments environnementaux uniquement lorsque les arguments « économiques » liés au prix ne suffisent plus.

e) la multiplicité des outils qui doit s’adapter à la réduction du rôle de l’État et ne pas négliger les actions de contrôles

Reconnaître que toute la palette des outils doit être utilisée n’a pas toujours été évident. Dans les années 80/90, par exemple, les recommandations de l’OCDE n’étaient guère en faveur de l’usage des réglementations et la priorité était donnée à l’utilisation de l’outil « prix de l’énergie ». Ce type de discours est caractéristique des périodes de faible intérêt pour les politiques énergétiques.

En revanche, les politiques mises en place après le premier choc pétrolier comme celles qui sont déployées aujourd’hui utilisent à peu près toute la palette des outils à la disposition des politiques publiques. Cette diversité s’explique par la multiplicité des cibles (entreprises, collectivités locales, administration, grand public) et des secteurs économiques concernés (industrie, transports, bâtiment, agriculture, énergie). Selon les sujets, il faut développer la recherche, réglementer, inciter, former, communiquer...

Il est remarquable de constater que la plupart de ces outils ont été développés et employés dès les années 70 et que les nombreuses innovations de l’époque sont toujours en place (ADEME) ou mises en œuvre : campagne de communication, opérations de démonstrations et opérations exemplaires, financement de la recherche, réglementation thermique, incitations fiscales... On note cependant le développement d’un nouveau type d’outils « mixtes », alliant la contrainte réglementaire et le marché : les systèmes de quotas pour les émissions ou les certificats d’économies d’énergie.

Toutefois, la palette des outils utilisables par l’État s’est réduite progressivement :
Politiques publiques

- sous l’effet de la construction européenne qui limite les capacités d’intervention unilatérale des États membres dans un certain nombre de domaines,
- par la politique d’ouverture et de libéralisation des marchés qui a fait disparaître notamment les capacités d’action directe par l’intermédiaire des opérateurs publics du domaine,
- sous l’effet de la décentralisation qui a transféré des compétences aux collectivités territoriales, ce qui ne permet plus à l’État de définir seul un certain nombre de politiques et de mettre ainsi en place des politiques unifiées sur l’ensemble du territoire.

Ces évolutions majeures nécessitent une évolution des outils utilisés et une adaptation des politiques menées intégrant plus et mieux :
- la dimension européenne,
- l’action internationale au niveau mondial
- l’action partenariale avec les collectivités territoriales.

Parallèlement, l’État a tendance à négliger les activités de contrôle et de sanction pour lesquelles son rôle n’est pas contesté et sa responsabilité reconnue. Ainsi, parallèlement à la mise en œuvre d’une réglementation de plus en plus fournie et complexe, les moyens de contrôle sont restés limités et se sont même parfois réduits, restreignant ainsi l’efficacité des réglementations elles-mêmes. Récemment les conséquences sur la vitesse et donc sur la sécurité routière mais aussi sur les consommations de carburants de la mise en place d’un système de contrôle adapté a parfaitement illustré la nécessité de politique de contrôle. A l’inverse, le respect de la réglementation thermique dans les bâtiments n’a jusqu’ici fait qu’obéir à un besoin de facilité.

Mais, il ne faut pas sous-estimer le rôle que jouent les prix pour faire évoluer la demande vers plus de sobriété, l’économie potentiellement réalisée étant un élément fort dans l’évolution des comportements et des actes d’achat ou d’investissement. D’ailleurs, les ouvrages fiscaux, qui ne sont pas les moins efficaces, qu’il s’agisse de taxes ou de crédits d’impôts, reposent également sur ce principe. Mais l’élasticité/prix de la consommation d’énergie peut paraître faible. En effet :

- Elle dépend beaucoup de la « rationalité » économique des acteurs, qui est certainement plus forte chez les entreprises ; toutefois, cette rationalité économique a eu aussi pour conséquence une progression plus rapide de l’efficacité énergétique dans le secteur de l’industrie que dans les autres secteurs, notamment pendant la période où l’évolution des prix était la moins forte, brouillant ainsi les raisonnements sur l’élasticité/prix.

- Elle dépend beaucoup aussi du niveau de dépendance de chaque acteur économique dans le domaine de l’énergie. Modifier profondément à court terme sa consommation d’énergie n’est en général pas aisé. Cela passe par des modifications de matériaux ou d’organisation qui, d’une part, ne peuvent pas être immédiates, d’autre part, nécessitent des investissements qui ne seront faits que si la pérennité de l’évolution des prix est reconnue.

f) le rôle déterminant du prix de l’énergie
- La hausse du niveau de vie et la part plus réduite des dépenses consacrées à l'énergie dans le pouvoir d'achat des français ont aussi émoussé leur réactivité face à une augmentation des prix de l'énergie.

L'élasticité à court terme est donc en général faible (de l’ordre de 0,3), même si elle n'est pas négligeable. On constate aujourd'hui par exemple, en France, une diminution de l'usage de la voiture individuelle et un accroissement de l'utilisation des transports publics, avec la réduction des consommations qui l’accompagne. Mais, cela reste marginal, l’usage de la voiture étant dans de très nombreux cas sans substitution possible à court terme.

En revanche, à moyen terme, le maintien d’un prix élevé des carburants conduit à faire évoluer la gamme des véhicules produits et achetés vers de moindres consommations et, à long terme, à faire évoluer les formes d’urbanisme, l’étalement urbain accompagné de l’éloignement domicile-travail étant facilité par un prix du transport individuel faible. L’effet structurant des prix sur l’évolution des besoins d’énergie à terme, quel que soit le secteur, ne doit donc pas être sous-estié, des prix faibles encourageant des modèles très consommateurs (cf. les consommations des véhicules aux USA) alors qu’une perspective d’évolution des prix à la hausse à moyen/long terme facilite le développement de produits ou d’organisation plus efficaces énergétiquement.

Aussi, est-il intéressant de noter que, dans les années 70, la rapide augmentation des prix du pétrole n’a pas entraîné le développement de politiques « sociales » ou « compassionnelles » visant à compenser pour le consommateur les effets directs de la hausse des prix. A l’époque les politiques de maintien « artificiel » d’un prix bas ou stable s’appliquaient essentiellement aux énergies d’origine nationale et avaient donc pour objectif de promouvoir l’indépendance énergétique nationale ou de protéger des activités économiques : subvention au charbon en Allemagne, soutien du gaz de Lacq… (à préciser).

En ce qui concerne la demande, les efforts ont plutôt porté sur les aides permettant d'orienter la consommation à la baisse, ce qui avait « naturellement » pour effet de diminuer aussi la facture. Il n’en est plus complètement de même depuis quelques années : la TIPP flottante avait directement pour objectif d’annuler l’effet de la hausse des prix du pétrole ; aujourd’hui, la politique des tarifs dans le domaine du gaz, la prime à la cuve pour aider les plus défavorisés à payer leur facture de fuel ou le chèque transport « carburant » viennent contrarier l’efficacité de l’effet prix dans la mise en œuvre des politiques d’efficacité énergétique.

g) le bâtiment : efficacité et limites de la réglementation

Depuis 1975, la réglementation a été un outil très efficace de progrès dans le domaine du résidentiel-tertiaire.

Elle a permis de faire progresser très significativement l’efficacité énergétique des bâtiments neufs. En particulier, la réglementation joue un effet de cliquet qui évite les retours en arrière quand l’intérêt pour l’énergie s’amenuise. Toutefois, l’effort dans ce domaine n’a pas été soutenu au même rythme pendant l’ensemble de la période. Ainsi, il n’y a pas eu de réglementations nouvelles entre 1988 et 2000. En revanche le rythme s’est à nouveau accéléré depuis, puisqu'une nouvelle réglementation est applicable depuis juillet 2006 avec un progrès de 15% par rapport à la précédente et
que la loi POPE a prévu qu’entre 2000 et 2020 les progrès des réglementations qui doivent intervenir tous les 5 ans seront de 40% au total.

Toutefois, la comparaison de l’efficacité des bâtiments français avec ceux de certains de nos voisins montre qu’il y a encore beaucoup d’efforts à faire et que les techniques permettent de faire déjà beaucoup mieux que la réglementation ; celle-ci n’est, en effet, jamais fixée au niveau maximum de ce qu’il est possible de faire mais au niveau qui est considéré comme « acceptable » par les parties concernées. Les nouvelles pratiques qui consistent à fixer désormais le rythme et le niveau des évolutions à venir sans complètement supprimer cet inconvénient devrait permettre, toutefois, d’entrer dans une démarche de progrès continus qui pourront être anticipés par les professionnels.

Cela suppose que l’on accompagne ces politiques d’actions fortes et systématiques de formation des professionnels aux nouvelles techniques et pratiques rendues nécessaires par les progrès de la réglementation. L’ampleur de la tâche aujourd’hui dans ce domaine est énorme et nécessite une mobilisation générale de tous les acteurs concernés par ces questions de formation, à la fois initiale et continue.

Enfin, la régulation, jusqu’à présent n’a concerné que les constructions neuves alors que le taux de renouvellement du parc est faible (1% par an) et que les bâtiments anciens ont une très mauvaise efficacité énergétique en général. Il est donc prioritaire de mettre en place des réglementations qui s’appliqueraient aux rénovations et des disposer de moyens financiers pour faciliter leur mise en œuvre, comme le permet déjà le crédit d’impôt. La mobilisation des réseaux bancaires notamment serait très utile.

h) les transports : efficacité et limites du soutien public

En dehors des prix, les principaux instruments de politique énergétique dans le secteur des transports couramment envisagés sont :
- La réglementation, qui a surtout été utilisée pour la lutte contre la pollution et les nuisances, mais l’a peu été pour infléchir la politique énergétique dans les transports.
- Les subventions pour l’utilisation de véhicules économiques ou de modes économiques, comme par exemple les subventions à l’achat de véhicules neufs (prime Balladur) ou les subventions à l’exploitation de modes que l’on veut favoriser (primes pour le transport combiné),
- Les actions publiques pour le développement d’infrastructures en faveur de modes peu consommateurs (développement du rail, des transports collectifs en zone urbaine),
- Les actions sur l’organisation de l’espace et la localisation des activités

Les incitations aux changements de mode de transport ont fait l’objet d’une analyse d’efficacité de la part du commissariat général du plan en 2003. Il en ressortait que leur efficacité était limitée : le transport combiné n’en a tiré que de faibles taux de croissance, et ce en dépit de dépenses publiques importantes. Le report modal a été faible et la baisse de consommation énergétique encore plus ; en effet le report d’un transport de la route vers le transport combiné réduit mais n’annule pas les trajets par route, qui sont nécessaires pour les acheminements terminaux, lesquels sont alors particulièrement énergétivores.
Cette dernière remarque est valable pour tous les transferts modaux : les consommations énergétiques moyennes des différents modes sont certes très différentes, les transports par automobile ou camion ayant une consommation moyenne plus forte que par fer ou voie navigable ; mais lorsqu’un système de subventions incite à des transferts modaux, ce ne sont pas les consommations moyennes qui sont en jeu, ainsi ce sont des trafics routiers déjà performants (par exemple des transports de marchandises sur longue distance) qui sont transférés sur le rail ; et il faut leur ajouter des parcours terminaux routiers consommateurs en énergie : au total le gain énergétique est bien sûr inférieur à celui qui résulterait de la comparaison des consommations moyennes des modes, mais il reste néanmoins réel et permet également une diversification énergétique vers l’électricité lorsqu’il y a recours au rail (cf. ci-dessous un exemple de bilan énergétique entre route et transport combiné rail route sur la liaison Paris Toulouse [valeur 2000 pour une unité de transport intermodal avec des parcours routiers d’approche et final de 30 km]).

Graphique n° 22 : Exemple de bilan énergétique entre route et transport combiné

(1) La politique d’infrastructures

Ces considérations s’appliquent à la politique d’infrastructure, dont le rendement énergétique est très mauvais. D’abord les trafics transférés ne sont pas ceux auxquels s’appliquent les consommations moyennes par mode. Ensuite les transferts modaux sont très faibles au regard des enjeux énergétiques et compte tenu des parts respectives de la route (80% du total des trafics) et des autres modes. On voit bien apparaître sur les études de trafic effectuées à l’occasion des évaluations de projets d’infrastructures que les reports de la route vers le fer ou vers la voie d’eau ne représentent que quelques années (souvent pas plus d’une à deux) de croissance du trafic routier sur la liaison en cause. Ceci est confirmé par les études d’élasticités qui montrent que les élasticités croisées entre modes sont faibles. Enfin, après que la politique d’adossement largement utilisée pour la construction du réseau autoroutier sous concession ait du être abandonnée sous l’injonction de la Commission européenne, la politique d’infrastructures est apparue extrêmement coûteuse en fonds publics, comme le montrent les analyses économiques de récents projets ferroviaires ou de voies navigables, qui nécessitent des subventions publiques de l’ordre de 70 à 80% de leur coût.
(2) L’organisation spatiale des activités économiques

On a aussi prôné les actions sur l’organisation de l’espace et sur les formes de l’activité économique. Mais peu de décisions ont été prises en ce sens. En terme d’organisation de l’espace, on recommande l’adoption de formes urbaines propices aux transports en commun moins énergivores. Mais les actions en ce domaine sont très lentes à produire leurs fruits, elles nécessitent une continuité d’action rare, et les analyses statistiques menées à leur sujet montrent que leurs effets sont faibles. On constate d’ailleurs que les tendances naturelles sont à un habitat dispersé et non à la concentration verticale.

Une autre forme de ce type d’action structurelle réside dans le désir de découplage entre l’activité économique et les transports. A ce titre on a mis en accusation les méthodes modernes de gestion de la production fondées sur un recours parfois abusif à la technique du « flux tendu », et jugées en général génératrices de transports. Les efforts de découplage des transports et de l’activité économique, lorsqu’ils ne sont pas fondés sur une politique de prix, se sont avérés rares et peu efficaces.

Au total, les politiques d’économie d’énergie qui ne s’appuient pas sur des instruments de prix sont à la fois peu efficaces en termes énergétiques et très coûteuses en termes de fonds publics.

C. Les politiques de développement de l’offre énergétique

En matière d’offre, les politiques économiques visent, depuis les années 70, à assurer la sécurité énergétique du pays, par une augmentation de l’offre d’origine nationale, la diversification des approvisionnements ainsi que la diversification des sources d’énergie utilisées. Comme pour la demande, ces politiques prennent une plus grande force lorsqu’il y a un risque de crise majeure.

1. augmentation de l’offre énergétique nationale : le parc nucléaire

L’augmentation de l’offre nationale a essentiellement consisté à créer et développer un parc de production d’électricité nucléaire qui a permis de sensiblement réduire la dépendance nationale par rapport aux énergies importées (cf. graphique ci-dessous).
La politique menée dans ce domaine a donc atteint les résultats poursuivis en terme de dépendance énergétique même si, fondée sur des hypothèses de croissance de consommation trop importante, elle a dû être sensiblement réduite en cours de période. La France est toutefois restée pendant une longue période en situation de surcapacité électrique, partiellement compensée par le développement des exportations.

*politique de l’offre en matière de pétrole et de gaz – à compléter*

2. **diversification des approvisionnements**

*(Commentaires sur la diversification géographique des approvisionnements de pétrole et gaz depuis 1973: Moyen-Orient, Mer du Nord, Russie, …)*

---

23. Production d’énergie primaire/total disponibilités
3. diversification du « mix » énergétique

(commentaires sur l'évolution des parts des différentes énergies dans le bilan énergétique depuis 1973 : baisse du charbon et du pétrole, hausse de l'électricité nucléaire et du gaz ; déjà traité en partie dans le chapitre I – B)

4. l’ouverture des marchés


Par contre, si les variations très importantes des prix de gros de l’électricité consécutives à l’ouverture ont pu surprendre nombre d’observateurs non spécialistes, persuadés que la mise en concurrence ne pouvait « que faire baisser les prix », elle n’a pas été une vraie surprise pour les professionnels du secteur, les services d’EDF en particulier. En effet, la baisse brutale constatée dans un premier temps était la conséquence logique des surcapacités dont disposait la plus grande partie de l’Europe au nom de politiques de sécurité (les prix sont tombés dans plusieurs pays dont l’Allemagne, premier marché du continent, au niveau des coûts marginaux de court terme). De même la hausse constatée dans un deuxième temps est la
conséquence logique de la tension entre l’offre et la demande qui s’est manifestée une fois les surcapacités résorbées.

La création d’un marché de droits d’émissions en Europe a été également plus rapide que prévu et de ce fait beaucoup de gouvernements européens, alors que l’analyse économique le laissait prévoir, ont été pris au dépourvu par la répercussion des prix du carbone dans les prix des marchés de gros électricques.

(à compléter)

5. les enseignements à tirer

a) l’offre énergétique : une préoccupation insuffisante hors des périodes de crise

Alors que les objectifs des politiques énergétiques en matière d’offre ont peu varié dans le temps, le niveau et la composition de l’offre énergétique ne deviennent réellement des sujets de politique publique qu’en période de crise ou de rupture possible. Ainsi, le lancement du programme nucléaire est très étroitement lié à la crise de 1973. Le développement du parc nucléaire et ses surcapacités ont ensuite conduit à porter moins d’intérêt à ces questions jusqu’à la période actuelle. Le sujet revient aujourd’hui sur le devant de la scène parce que :

- nombre de pays, y compris très voisins, ont connu des « black out » plus ou moins graves qui ont mis en évidence la fragilité de l’équilibre actuel dans nos pays développés,
- la France elle-même s’est trouvée à plusieurs reprises, notamment pendant la canicule de 2003, dans une situation tendue, qui conduit à mettre ou remettre en service de nouvelles capacités
- les tensions internationales et l’augmentation de la demande des pays émergents en matière d’hydrocarbures ont rappelé que notre offre électricque laisse tout de même subsister une dépendance vis-à-vis d’autres sources d’énergie.

On constate alors, dans la plupart des pays développés, des capacités de production tendues due à des investissements trop faibles, une organisation des approvisionnements peu performante, notamment dans le domaine du gaz, un système de distribution qui ne permet pas d’utiliser au mieux les capacités disponibles, en matière d’électricité en Europe en particulier. Tous ces éléments ont été très peu anticipés par les politiques énergétiques des différents pays, y compris en France.

Les investissements sont aujourd’hui en train de reprendre dans les différentes filières énergétiques. En raison du manque d’interconnexions électriques et d’un manque de fluidité dans le marché du gaz (difficultés d’accès aux capacités de transit) ce développement se fait sur une base encore très nationale, ce qui empêche de tirer entièrement parti des complémentarités en Europe.
b) la libéralisation des marchés, des conséquences encore mal connues, une régulation nécessaire

La libéralisation des marchés, la disparition progressive des monopoles publics, l’apparition de nouveaux entrants ont des conséquences importantes sur l’offre d’énergie mais qu’il est aujourd’hui encore difficile de mesurer.

- L’augmentation du nombre d’acteurs, en faisant jouer la concurrence, devrait permettre de diversifier les offres, notamment de permettre de développer des propositions commerciales reposant sur le « service énergétique fourni » plutôt que sur la quantité d’énergie vendue.

- A l’inverse on peut craindre que le poids de la rentabilité à court terme ne soit renforcé, limitant les investissements nécessaires pour assurer la production nécessaire à moyen/long terme ; il y aurait donc un risque d’accentuation du caractère cyclique de l’évolution des prix de l’énergie reposant sur une succession de période de tension sur les capacités de production puis de surcapacités, les acteurs réagissant ensemble et de la même manière aux mêmes signaux prix.

Les conséquences de ces évolutions dépendront grandement du fonctionnement des marchés, de leur transparence, de leur fluidité et donc, comme pour tout marché, de l’existence d’un système de régulation efficace adapté à la taille des marchés et à l’importance stratégique de l’énergie.

L’interaction de ce marché avec celui du carbone dont la mise en place est encore balbutiante mais qui devrait prendre une place importante dans l’avenir dans le cadre de la lutte contre le changement climatique; au niveau mondial devra également faire l’objet d’une attention très particulière.

c) des modes de soutien différents selon les types d’énergie ...

Selon le type d’énergie concerné, les modalités de soutien à utiliser sont différentes.

- Le développement de l’énergie nucléaire est passé par un fort soutien à la recherche qui se poursuit encore aujourd’hui tant pour améliorer les capacités et l’efficacité de production que pour trouver des solutions à la gestion des déchets puis par une phase de fort investissements qui ont ensuite permis la production d’un kWh à faible coût.

- A l’inverse, les énergies renouvelables nécessitent certes des efforts en terme de recherche, mais d’une ampleur moindre, et les investissements unitaires sont moindres mais le coût de production ne diminue que progressivement au fur et à mesure du développement conjoint de la recherche et des effets d’échelle. Le soutien à ces types d’énergie passe donc par un soutien au prix de l’énergie produite jusqu’à ce qu’il rejoigne celui des autres énergies.
d) ... qui nécessitent d’avoir des politiques de filières cohérentes

Les politiques industrielles menées dans ce secteur doivent donc avoir une cohérence d’ensemble afin d’assurer le développement harmonieux des acteurs des filières concernées.

Ainsi, par exemple, le soutien à la recherche française dans le photovoltaïque n’a pas de raison d’être si l’on ne met pas en place une politique de soutien minimal du marché permettant aux industriels qui investissent dans la recherche ou qui ont vocation à en utiliser les résultats d’assurer un minimum de chiffre d’affaires sur le territoire national. C’est dans cet esprit que les tarifs d’achat de l’électricité photovoltaïque ont récemment été augmentés.

e) les politiques industrielles ne doivent pas être limitées aux besoins énergétiques nationaux

Le développement actuel des énergies renouvelables à travers le monde, notamment éolienne et solaire, et la place relativement faible qu’y tiennent les industriels français les privant ainsi d’une dynamique de marché remarquable illustre l’importance d’assurer à toutes les formes d’offre énergétique d’avenir la possibilité de se développer, même si les capacités et les choix nationaux d’approvisionnement sont différents selon les pays. Les efforts récents de relance de ces politiques, notamment sous forme d’incitations fiscales ou de tarifs d’achat, visent à remettre nos industriels au cœur des compétiteurs mondiaux, y compris dans ces technologies et les résultats commencent à apparaître.

De même, la capture et le stockage du CO2, bien que d’une utilité moindre en France que dans de nombreux pays utilisant massivement des centrales thermiques, doivent faire l’objet d’un soutien en matière de R&D et de démonstration afin que nos industriels, qui ont des compétences reconnues dans ces domaines, puissent faire la preuve de leurs capacités sur un marché promis à une belle expansion.
Membres du Groupe 1

Président : Michèle PAPPALARDO
Rapporteur CAS : Aude BODIGUEL

<table>
<thead>
<tr>
<th>Membres titulaires</th>
<th>Suppléants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruno SIDO</td>
<td>Sénateur de la Haute-Marne</td>
</tr>
<tr>
<td>MEDEF</td>
<td>Philippe ROSIER</td>
</tr>
<tr>
<td>CGPME</td>
<td>Jean-François ROUBAUD (président)</td>
</tr>
<tr>
<td>UPA</td>
<td>Pierre PERRIN (président)</td>
</tr>
<tr>
<td>Poweo</td>
<td>Charles BEIGBEDER (PDG)</td>
</tr>
<tr>
<td>EDF</td>
<td>Pierre GADONNEIX (président)</td>
</tr>
<tr>
<td>INSEE</td>
<td>Jean-Michel CHARPIN (dir. général)</td>
</tr>
<tr>
<td>DGEMP</td>
<td>Dominique MAILLARD (dir. général)</td>
</tr>
</tbody>
</table>

Michel ROMIEU
Dominique BROGGIO
Jean LARDIN
Dominique LAGARDE
Marc BEUDAERT
Richard LAVERGNE